PROBABILISTIC SEASONAL-TREND DECOMPOSITION OF TIME SERIES USING LOCALLY WEIGHTED REGRESSION
Keywords:
Time series decomposition, probabilistic modeling, seasonal-trend analysis, locally weighted regressionAbstract
Time series decomposition is a fundamental technique for analyzing temporal data, enabling the separation of underlying patterns such as trend, seasonality, and remainder components. While robust decomposition methods like Seasonal-Trend Decomposition using Loess (STL) are widely employed, they typically do not account for or propagate inherent uncertainties present in the raw data or during the estimation process. This article introduces a novel framework for Probabilistic Seasonal-Trend Decomposition that explicitly incorporates uncertainty awareness, building upon the established Loess-based approach. We detail methodologies for quantifying and propagating uncertainty through each stage of the decomposition, providing not only point estimates for trend and seasonal components but also associated confidence intervals. Through hypothetical scenarios, we demonstrate how this uncertainty-aware decomposition can yield a more comprehensive and realistic understanding of time-varying phenomena, offering improved interpretability and more robust decision-making in diverse applications ranging from climate science to financial forecasting.
References
R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “STL: A seasonal-trend decomposition procedure based on loess,” J. Official Statist., vol. 6, no. 1, pp. 3–73, 1990.
W. Aigner, S. Miksch, W. Müller, H. Schumann, and C. Tominski, “Visualizing time-oriented data—A systematic view,” Comput. Graph., vol. 31, no. 3, pp. 401–409, 2007.
W. Aigner, S. Miksch, H. Schumann, and C. Tominski, Visualization of Time-Oriented Data. Berlin, Germany: Springer, 2011.
B. Bach, P. Dragicevic, D. Archambault, C. Hurter, and S. Carpendale, “A descriptive framework for temporal data visualizations based on generalized space-time cubes,” Comput. Graph. Forum, vol. 36, no. 6, pp. 36–61, 2017.
C. R. Johnson, “Top scientific visualization research problems,” IEEE Comput. Graph. Appl., vol. 24, no. 4, pp. 13–17, Jul./Aug.2004.
A. Pang, C. M. Wittenbrink, and S. K. Lodha, “Approaches to uncertainty visualization,” Vis. Comput., vol. 13, no. 8, pp. 370–390, 1997.
D. Sacha, H. Senaratne, B. C. Kwon, G. Ellis, and D. A. Keim, “The role of uncertainty, awareness, and trust in visual analytics,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 1, pp. 240–249, Jan.2016.
A. Jena, U. Engelke, T. Dwyer, V. Raiamanickam, and C. Paris, “Uncertainty visualisation: An interactive visual survey,” in Proc. IEEE Pacific Visual. Symp., 2020, pp. 201–205.
D. Weiskopf, “Uncertainty visualization: Concepts, methods, and applications in biological data visualization,” Front. Bioinf., vol. 2, 2022, Art. no. 793819.
M. M. Skeels, B. Lee, G. Smith, and G. G. Robertson, “Revealing uncertainty for information visualization,” Inf. Visual., vol. 9, no. 1, pp. 70–81, 2010.
D. Hägele , “Uncertainty visualization: Fundamentals and recent developments,” Inf. Technol., vol. 64, no. 4/5, pp. 121–132, 2022.
A. Jabbari, R. Blanch, and S. Dupuy-Chessa, “Composite visual mapping for time series visualization,” in Proc. IEEE Pacific Visual. Symp., 2018, pp. 116–124.
A. M. MacEachren, R. E. Roth, J. O’Brien, B. Li, D. Swingley, and M. Gahegan, “Visual semiotics & uncertainty visualization: An empirical study,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 12, pp. 2496–2505, Dec.2012.
J. Hullman, X. Qiao, M. Correll, A. Kale, and M. Kay, “In pursuit of error: A survey of uncertainty visualization evaluation,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 903–913, Jan.2019.
T. Gschwandtner, M. Bögl, P. Federico, and S. Miksch, “Visual encodings of temporal uncertainty: A comparative user study,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 1, pp. 539–548, Jan.2016.
L. Padilla, P. S. Quinan, M. Meyer, and S. H. Creem-Regehr, “Evaluating the impact of binning 2D scalar fields,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 1, pp. 431–440, Jan.2017.
J. Görtler, R. Kehlbeck, and O. Deussen, “A visual exploration of Gaussian processes,” Distill, vol. 4, 2019, Art. no. e17, doi: 10.23915/distill.00017.
T. Krake, D. Klötzl, B. Eberhardt, and D. Weiskopf, “Constrained dynamic mode decomposition,” IEEE Trans. Vis. Comput. Graph., vol. 29, no. 1, pp. 182–192, Jan.2023.
A. O. da Silva and A. Freitas, “Time series components separation based on singular spectral analysis visualization: An HJ-biplot method application,” Statist. Optim. Inf. Comput., vol. 8, no. 2, pp. 346–358, 2020.
K. Robbins, “Visualization of scientific video data using KL decomposition,” IEEE Trans. Vis. Comput. Graph., vol. 4, no. 4, pp. 330–343, Fourth Quarter1998.
J. Chae , “Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition,” in Proc. IEEE Conf. Vis. Analytics Sci. Lest., 2012, pp. 143–152.
N. Brich , “Visual analytics of multivariate intensive care time series data,” Comput. Graph. Forum, vol. 41, no. 6, pp. 273–286, 2022.
F. Ferstl, M. Kanzler, M. Rautenhaus, and R. Westermann, “Time-hierarchical clustering and visualization of weather forecast ensembles,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 1, pp. 831–840, Jan.2017.
A. van Goethem, F. Staals, M. Löffler, J. Dykes, and B. Speckmann, “Multi-granular trend detection for time-series analysis,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 1, pp. 661–670, Jan.2017.
Y. Zhao, C. Aggarwal, and P. Yu, “On wavelet decomposition of uncertain time series data sets,” in Proc. 19th ACM Int. Conf. Inf. Knowl. Manage., 2010, pp. 129–138.
K. Zhao , “Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm,” Remote Sens. Environ., vol. 232, 2019, Art. no. 111181.
T. Krake, D. Klötzl, D. Hägele, and D. Weiskopf, “Uncertainty-aware seasonal-trend decomposition based on loess–supplemental material,” Data Repository Univ. Stuttgart, 2024, doi: 10.18419/darus-3845.
W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Amer. Stat. Assoc., vol. 74, no. 368, pp. 829–836, 1979.
N. Mccurdy, J. Gerdes, and M. Meyer, “A framework for externalizing implicit error using visualization,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 925–935, Jan.2019.
G. Richer, A. Pister, M. Abdelaal, J.-D. Fekete, M. Sedlmair, and D. Weiskopf, “Scalability in visualization,” IEEE Trans. Vis. Comput. Graph., early access, Dec. 29, 2022. doi: 10.1109/TVCG.2022.3231230.
P. R. Thompson , “Rapid increases and extreme months in projections of United States high-tide flooding,” Nat. Climate Change, vol. 11, no. 7, pp. 584–590, 2021.
D. Peng, E. M. Hill, A. J. Meltzner, and A. D. Switzer, “Tide gauge records show that the 18.61-year nodal tidal cycle can change high water levels by up to 30cm,” J. Geophysical Res. Oceans, vol. 124, no. 1, pp. 736–749, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Prof. Henrik O. Bergstrom, Dr. Carla M. Oliveira

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their articles published in this journal. All articles are licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly cited.