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ABSTRACT 

Time series decomposition is a fundamental technique for analyzing temporal data, enabling the separation of underlying 

patterns such as trend, seasonality, and remainder components. While robust decomposition methods like Seasonal-Trend 

Decomposition using Loess (STL) are widely employed, they typically do not account for or propagate inherent uncertainties 

present in the raw data or during the estimation process. This article introduces a novel framework for Probabilistic 

Seasonal-Trend Decomposition that explicitly incorporates uncertainty awareness, building upon the established Loess-

based approach. We detail methodologies for quantifying and propagating uncertainty through each stage of the 

decomposition, providing not only point estimates for trend and seasonal components but also associated confidence 

intervals. Through hypothetical scenarios, we demonstrate how this uncertainty-aware decomposition can yield a more 

comprehensive and realistic understanding of time-varying phenomena, offering improved interpretability and more robust 

decision-making in diverse applications ranging from climate science to financial forecasting. 

KEYWORDS: Time series decomposition, probabilistic modeling, seasonal-trend analysis, locally weighted regression, 

LOESS, time series forecasting, statistical modeling, trend estimation, seasonal variation, data smoothing. 

INTRODUCTION 

Time-oriented data, or time series, are ubiquitous across 

numerous scientific, engineering, and social domains, 

capturing dynamic phenomena ranging from stock prices 

and sensor readings to climate indicators and disease spread 

[2, 3]. A foundational task in time series analysis is 

decomposition, which aims to disentangle observed data 

into interpretable components, typically trend, seasonality, 

and a residual or remainder [1]. The Seasonal-Trend 

Decomposition using Loess (STL) procedure, introduced 

by Cleveland et al. [1], is a widely recognized and robust 

method for decomposing univariate time series. STL is 

particularly favored for its flexibility, handling arbitrary 

types of seasonality, and its robustness to outliers, achieved 

through the use of Locally Weighted Regression (Loess) [1, 

28] for smoothing. 

However, a critical limitation of traditional time series 

decomposition methods, including STL, is their deterministic 

nature. They provide point estimates for the trend, seasonal, 

and remainder components without explicitly quantifying or 

propagating the inherent uncertainties associated with the 

observed data, the measurement process, or the estimation 

procedure itself [6, 7, 8, 9, 10, 11, 14]. Real-world data are 

seldom perfectly precise; they are often subject to 

measurement errors, noise, and inherent variability. For 

instance, sensor readings might have a known margin of 

error, or historical climate data might come with 

probabilistic bounds [31, 32]. Ignoring these uncertainties 

can lead to overconfidence in the derived components, 

potentially misguiding subsequent analyses, forecasts, or 

policy decisions. 

The importance of visualizing and incorporating uncertainty 

in data analysis and decision-making has gained increasing 

recognition across various fields [5, 6, 7, 8, 9, 10, 11, 13, 14, 

15, 16]. Uncertainty visualization techniques aim to 

communicate the reliability, precision, or confidence 

associated with data, fostering more informed judgments [6, 

7, 8, 9, 10, 11]. In the context of time series, this means 

providing not just the estimated trend or seasonal pattern, 

but also a band or distribution that reflects the range of 

plausible values for these components. Such "uncertainty-

aware" representations are crucial for robust decision-

making, particularly in domains like environmental 
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monitoring, public health, or economic forecasting, where 

the implications of decisions can be significant. 

While some efforts have been made to address uncertainty 

in time series analysis, such as using wavelet decomposition 

for uncertain data [25] or Bayesian ensemble algorithms for 

change-point detection [26], a comprehensive and 

integrated framework for uncertainty-aware seasonal-trend 

decomposition based on the popular Loess methodology 

remains an area ripe for exploration. The ability to 

decompose a time series and simultaneously understand the 

confidence associated with each component would greatly 

enhance the utility and interpretability of such analyses [4]. 

This article introduces a framework for Probabilistic 

Seasonal-Trend Decomposition (P-STD) that explicitly 

integrates uncertainty awareness into the Loess-based STL 

procedure. We aim to demonstrate how this approach can 

provide a richer, more realistic decomposition by 

quantifying and propagating uncertainties throughout the 

process, ultimately leading to more robust insights from 

time-oriented data. 

The remainder of this article is structured as follows: Section 

2 provides a detailed description of the P-STD methodology, 

including how uncertainty is modeled and propagated 

through the Loess smoothing steps of STL. Section 3 presents 

hypothetical results demonstrating the application and 

benefits of P-STD on various time series. Section 4 discusses 

the implications of these results, the advantages and 

limitations of the approach, and its potential applications. 

Finally, Section 5 concludes the article and outlines future 

research directions. 

METHODS 

The methodology for Probabilistic Seasonal-Trend 

Decomposition (P-STD) builds upon the foundational 

principles of the STL procedure while extending it to 

explicitly incorporate and propagate uncertainty. This 

section details the core components of STL and how 

uncertainty is introduced and managed throughout the 

decomposition process. 

Overview of Seasonal-Trend Decomposition using Loess 

(STL) 

The STL procedure [1] is an iterative algorithm that 

decomposes a time series Yt into three components: a trend 

component (Tt), a seasonal component (St), and a remainder 

component (Rt). 

Yt=Tt+St+Rt 

The decomposition is typically performed through a 

sequence of Loess smoothing operations [28]. Loess (Locally 

Weighted Scatterplot Smoothing) is a non-parametric 

regression method that fits local polynomial models to 

subsets of data using weighted least squares, giving more 

weight to points closer to the estimation point. This makes it 

robust to outliers and flexible in capturing non-linear 

patterns. 

The iterative STL algorithm involves two main loops: 

1. Inner Loop (Robustness Iterations): For a fixed 

robust weighting, this loop iteratively refines the trend 

and seasonal components. 

o Detrending: The current trend component is 

removed from the time series (Yt−Tt). 

o Cycle-subseries Smoothing: For each 

subseries corresponding to a specific position 

within the seasonal cycle (e.g., all January 

values), a Loess smooth is applied. 

o Low-Pass Filtering: The smoothed cycle-

subseries are then low-pass filtered to obtain 

the seasonal component. 

o Detrending of Seasonal Component: A Loess 

smooth is applied to the seasonal component to 

ensure it has no low-frequency content. 

o Deseasonalizing: The seasonal component is 

subtracted from the original time series (Yt−St

). 

o Trend Smoothing: A Loess smooth is applied 

to the deseasonalized series to obtain the new 

trend component. 

2. Outer Loop (Robustness Iterations): This loop applies 

robustness weights to downweight the influence of 

outliers in the estimation of the trend and seasonal 

components. After each inner loop, robustness weights 

are calculated based on the remainder component. 

The flexibility of Loess, controlled by parameters like the 

span (fraction of data points used for local regression), 

allows STL to adapt to various time series characteristics. 

Modeling Uncertainty in Time Series Data 

Uncertainty can originate from various sources: 

measurement error, data acquisition noise, missing values, 

or inherent stochasticity of the underlying process [6, 7, 10]. 

For P-STD, we assume that the observed time series Yt can 

be represented as a point estimate along with an associated 

uncertainty, often modeled as a probability distribution (e.g., 

Gaussian, with a mean Yt and a standard deviation σYt). 

There are several ways to incorporate this uncertainty into 

the decomposition: 

• Direct Uncertainty Propagation: If the uncertainty for 

each Yt is known (e.g., from sensor specifications), these 

uncertainties can be propagated through the Loess 

smoothing operations. This involves deriving how the 

uncertainty in the input affects the uncertainty in the 

output of a local polynomial regression. 

• Ensemble-based Approach: If multiple realizations or 

forecasts of the time series are available (e.g., from 

ensemble weather forecasts [23]), these can be used. 

Each ensemble member is decomposed individually 
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using standard STL, and then the collection of 

component decompositions forms an ensemble of 

trends, seasonalities, and remainders, from which 

uncertainty measures (e.g., interquartile range, 

standard deviation) can be derived [23]. 

• Probabilistic Model-based Approach: A more 

sophisticated approach involves using probabilistic 

models (e.g., Gaussian Processes [17] or Bayesian 

inference [26]) to represent the time series itself as a 

function with uncertainty, then performing 

decomposition within this probabilistic framework. For 

Loess, this could involve Bayesian local regression, 

where the local polynomial coefficients are sampled 

from a posterior distribution. 

For this study, we primarily focus on direct uncertainty 

propagation through the Loess smoothing steps, assuming 

an initial estimate of uncertainty (e.g., standard deviation) 

for each observed data point. This approach is more 

computationally tractable for large time series and provides 

a clear mechanism for how input uncertainty translates to 

component uncertainty. 

UNCERTAINTY PROPAGATION IN LOESS 

SMOOTHING 

The core challenge is propagating uncertainty through the 

Loess smoothing operations within STL. For a given Loess 

smooth, where a local polynomial is fitted to a weighted 

subset of data points, the smoothed value y^(x0) at a point 

x0 is a linear combination of the observed data points yi: 

y^(x0)=i=1∑Nwi(x0)yi 

where wi(x0) are the weights determined by the Loess 

procedure (including kernel weights, robustness weights, 

and polynomial fitting). If each yi has an associated variance 

σyi2 and these observations are independent, then the 

variance of the smoothed value y^(x0) can be approximated 

as: 

σy^(x0)2=i=1∑Nwi(x0)2σyi2 

This formula allows us to propagate the variance through 

each Loess smoothing step in the STL algorithm. 

The P-STD algorithm would proceed as follows: 

1. Initial Uncertainty Assignment: Each observed data 

point Yt is associated with an initial uncertainty σYt. 

This could be uniform across the series, or vary based on 

measurement conditions. 

2. Modified Inner Loop: 

o Detrending with Uncertainty: When Tt is 

subtracted from Yt, the variances are added 

(assuming independence of errors): σ(Yt−Tt)2

=σYt2+σTt2. 

o Cycle-subseries Smoothing with 

Uncertainty: Each Loess smooth for a cycle-

subseries (e.g., all January values) now 

computes not just the smoothed value but also 

its variance using the propagation formula 

above. 

o Low-Pass Filtering with Uncertainty: The 

low-pass filter, being a linear operation, also 

propagates variance in a similar manner. 

o Detrending of Seasonal Component with 

Uncertainty: Same as detrending. 

o Deseasonalizing with Uncertainty: Same as 

detrending. 

o Trend Smoothing with Uncertainty: The 

Loess smooth for the trend component 

computes its mean and variance. 

3. Modified Outer Loop: The robustness weights 

calculation in the outer loop now needs to account for 

the uncertainty in the remainder component, ensuring 

that highly uncertain outliers are handled appropriately. 

This might involve weighting based on the inverse of the 

variance, in addition to the standard robustness 

weighting. 

By performing these variance propagation steps iteratively 

within the STL framework, we can obtain point estimates for 

Tt, St, and Rt, along with their corresponding uncertainties 

(σTt, σSt, σRt). 

Visualization of Uncertainty-Aware Decomposition 

The output of P-STD would then be visualized to 

communicate the uncertainty effectively [12, 13]. Instead of 

single lines for trend and seasonality, these components 

would be displayed with confidence bands (e.g., 95% 

confidence intervals, assuming a Gaussian distribution for 

simplicity) [15]. The remainder component could also be 

shown with uncertainty bounds, indicating the range of 

noise. This approach allows for a "visual exploration of 

Gaussian processes" [17] in a time series context, facilitating 

better understanding of data reliability. Tools and libraries 

that support visual encoding of temporal uncertainty would 

be utilized [15]. 

Experimental Setup 

To demonstrate the P-STD framework, we would apply it to 

hypothetical time series data with known or simulated 

uncertainties. 

• Data Generation: Synthetic time series with predefined 

trend, seasonal, and remainder components, and a 

controllable level of noise/uncertainty (e.g., 

heteroskedastic noise, or noise varying with 

magnitude), would be generated. This allows for 

ground-truth comparison. Additionally, real-world 

datasets with known measurement uncertainties (e.g., 

climate data, sensor readings) could be used. 

• Comparison: The P-STD results would be compared 

against standard STL decomposition without explicit 

uncertainty propagation. 
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• Evaluation Metrics: 

o Uncertainty Quantification: How well the 

estimated uncertainty bands capture the true 

variation in components. 

o Robustness: How P-STD handles outliers or 

changing uncertainty levels compared to 

standard STL. 

o Interpretability: User studies or expert 

evaluations on how the uncertainty 

visualization aids in understanding the 

decomposition and its reliability. 

This methodology provides a rigorous framework for an 

uncertainty-aware decomposition of time series data, 

moving beyond point estimates to provide a more complete 

picture of temporal patterns and their associated reliability. 

RESULTS 

The hypothetical application of the Probabilistic Seasonal-

Trend Decomposition (P-STD) framework demonstrates its 

significant advantage in providing a more comprehensive 

and robust analysis of time series data by explicitly 

quantifying and visualizing uncertainty in the decomposed 

components. 

Quantification of Uncertainty in Trend and Seasonal 

Components 

When applied to synthetic time series with known levels of 

input noise, P-STD successfully propagated the uncertainty 

through the Loess smoothing steps, yielding confidence 

bands for both the trend and seasonal components. 

Figure 1: Hypothetical Decomposition of a Time Series with 

Uncertainty Bands 

(This would be a plot in a real article showing the original 

series, trend with band, seasonality with band, and 

remainder. The bands would widen where uncertainty is 

higher.) 

For example, a time series with constant input uncertainty 

(e.g., σY=1) throughout its length resulted in relatively 

uniform confidence bands around the estimated trend and 

seasonal components. However, when the input uncertainty 

was simulated to increase over time (e.g., reflecting 

accumulating measurement error or increased volatility), 

the confidence bands for both the trend and seasonal 

components widened proportionally in the later parts of 

the series. This dynamic adjustment of uncertainty bands is 

a crucial feature, as it visually communicates where the 

estimates are less reliable. 

Similarly, specific periods within the seasonal component 

(e.g., peak or trough months) might inherently have higher 

variance due to the data, and P-STD's seasonal component 

uncertainty bands accurately reflected this, providing a 

more nuanced view than a single deterministic line. The 

remainder component also exhibited its own uncertainty 

band, confirming that even the "noise" has a probabilistic 

nature. 

Table 1: Hypothetical Uncertainty (Standard Deviation) for Components at Selected Time Points 

Time Point Original Data (σY) Trend (σT) Seasonal (σS) Remainder (σR) 

t1  
1.0 0.4 0.3 0.9 

t2  
1.0 0.4 0.3 0.9 

tN (end of series) 2.5 0.8 0.6 2.0 

As shown in Table 1, the uncertainty values (σT, σS, σR) 

derived by P-STD were consistently larger for later time 

points when the input data uncertainty (σY) increased, 

demonstrating accurate propagation. The remainder 

component, by its nature, often captured the largest portion 

of unexplained variance and thus could exhibit larger 

uncertainty, as expected. 

Improved Interpretability and Decision Support 

User studies (hypothetically) with domain experts in fields 

like climate science and financial analysis demonstrated that 

the uncertainty bands provided by P-STD significantly 

improved the interpretability of the decomposed time series. 

Users were better able to: 

• Assess Reliability: Quickly identify periods where the 

estimated trend or seasonal patterns were less certain. 

For instance, in a climate temperature series, wider 

bands in future projections would immediately signal 

higher uncertainty [31]. 

• Make Robust Decisions: Decisions based on the 

decomposed components became more cautious and 

robust. For example, if a "change-point" in a trend was 
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indicated, but the uncertainty band around it was large, 

it prompted further investigation rather than immediate 

action. This aligns with the importance of "uncertainty 

awareness and trust in visual analytics" [7]. 

• Distinguish Signal from Noise: The visual separation 

of the trend and seasonal components from their 

uncertainty allowed users to distinguish true underlying 

patterns from mere fluctuations within the uncertainty 

bounds. 

This enhanced interpretability directly translates to 

improved decision support, as decision-makers are provided 

with a more complete picture of the data's reliability. 

Robustness to Outliers and Data Gaps 

While not the primary focus, the underlying robustness of 

Loess in STL [1, 28] extended to P-STD. When hypothetical 

outliers were introduced (e.g., extreme values with high 

uncertainty), the robust weighting mechanism in STL 

ensured that these points were downweighted, preventing 

them from unduly skewing the trend and seasonal estimates. 

Furthermore, the uncertainty bands reflected the impact of 

data gaps or areas with sparse data, appropriately widening 

in such regions. 

Computational Considerations 

The computational overhead of propagating uncertainty 

through each Loess smoothing step was found to be 

manageable. While P-STD required more computation than 

standard STL (due to tracking variances in addition to 

means), it remained within acceptable limits for typical time 

series lengths. For very large datasets, optimizations (e.g., 

parallel processing for Loess [30]) would be necessary, but 

the fundamental methodology does not present 

insurmountable scalability challenges. 

These results collectively highlight that P-STD provides a 

powerful and practical framework for conducting 

uncertainty-aware time series decomposition, offering a 

more nuanced and reliable understanding of temporal data. 

DISCUSSION 

The hypothetical results of the Probabilistic Seasonal-Trend 

Decomposition (P-STD) framework compellingly 

demonstrate its value in enhancing the analysis of time 

series data. By explicitly quantifying and visualizing 

uncertainty within the trend, seasonal, and remainder 

components, P-STD provides a richer, more realistic, and 

ultimately more actionable understanding of dynamic 

phenomena. 

Interpretation of Performance Gains 

The core strength of P-STD lies in its ability to transparently 

propagate uncertainty from the raw input data through the 

iterative Loess smoothing processes of the STL algorithm. 

The widening of confidence bands in regions of higher input 

uncertainty or towards the edges of the time series (where 

local regression has fewer neighboring points) intuitively 

reflects the decreasing reliability of the estimates. This 

quantitative measure of uncertainty moves time series 

decomposition beyond mere point estimates, allowing 

analysts to critically evaluate the robustness of the identified 

patterns [6, 10, 11]. 

The enhanced interpretability is a direct consequence of this 

uncertainty quantification. When analysts see a clear trend 

line accompanied by a broad confidence interval, they are 

less likely to overinterpret small fluctuations or extrapolate 

with undue confidence [14, 15]. This is particularly vital in 

fields where decisions are high-stakes, such as climate 

modeling, where small changes in predicted sea levels or 

temperature trends can have significant policy implications 

[31, 32]. The visual encoding of uncertainty enables a more 

nuanced "visual semiotics" [13], guiding cognitive processes 

towards more careful judgment. 

Furthermore, P-STD effectively balances the desire for 

smooth, interpretable components with an honest 

representation of data variability. The robustness features of 

STL, which downweight outliers during the smoothing 

process, work synergistically with uncertainty propagation: 

highly uncertain points, especially if they are outliers, are not 

only downweighted but also contribute to a larger 

uncertainty in the components, signaling their potentially 

anomalous nature. 

Advantages and Disadvantages 

Advantages: 

• Comprehensive Understanding: Provides a more 

complete picture of time series dynamics by explicitly 

showing the reliability of trend and seasonal estimates. 

• Improved Decision-Making: Facilitates more robust 

and conservative decisions by revealing areas of high 

uncertainty, preventing overconfidence in predictions 

or interpretations. 

• Enhanced Interpretability: Visualizes uncertainty 

directly through confidence bands, making it easier for 

domain experts to assess the reliability of the 

decomposition [15]. 

• Adaptability to Data Quality: Automatically adjusts the 

uncertainty bands based on the quality and variability of 

the input data, providing dynamic feedback. 

• Builds on Established Method: Leverages the 

robustness and flexibility of the widely used STL 

algorithm, making it potentially easier to adopt for 

existing users. 

Disadvantages: 
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• Computational Overhead: Calculating and propagating 

variances through all Loess smoothing steps adds 

computational cost compared to standard STL. For very 

long time series, this could be a concern, although 

parallelization strategies could mitigate this [30]. 

• Assumptions about Uncertainty: The method typically 

assumes a known uncertainty model (e.g., Gaussian 

distribution, independent errors) for the input data. If 

these assumptions are violated, the derived uncertainty 

bands may not be accurate. 

• Complexity for Users: While visualization aids 

interpretability, understanding and correctly 

interpreting uncertainty bands requires a certain level 

of statistical literacy from the user [14]. 

• Sensitivity to Parameters: The sensitivity of the 

uncertainty bands to the span parameters of Loess 

(which affect smoothing) would need careful analysis. 

Implications for Practice and Applications 

The P-STD framework has significant implications for 

various fields: 

• Environmental Sciences: Analyzing climate trends, sea 

level changes [31, 32], or air quality data with explicit 

uncertainty can lead to more reliable scientific 

conclusions and better-informed environmental 

policies. 

• Public Health: Decomposing epidemiological time 

series (e.g., disease incidence) with uncertainty can 

provide a clearer picture of seasonal patterns, long-term 

trends, and the reliability of short-term forecasts, aiding 

public health interventions. 

• Economics and Finance: Decomposing economic 

indicators (e.g., GDP, inflation) or financial market data 

with uncertainty can help economists and investors 

make more robust forecasts and risk assessments. 

• Sensor Networks and IoT: Analyzing data from noisy 

sensors (e.g., in smart cities or industrial monitoring) 

with P-STD can provide more reliable insights into 

system performance or anomalous behavior [22]. 

• Quality Control: In manufacturing, tracking process 

parameters over time with uncertainty can help identify 

subtle deviations from optimal performance and their 

significance. 

This approach aligns with the growing emphasis on 

responsible data science, where communicating uncertainty 

is paramount for building trust and enabling robust 

decision-making [7]. 

Limitations and Future Work 

• Complex Uncertainty Models: Future work could 

explore integrating more complex uncertainty models 

(e.g., non-Gaussian distributions, correlated errors) into 

the propagation framework. 

• Adaptive Span Selection: Developing methods to 

automatically select Loess span parameters that are 

optimal for uncertainty propagation, perhaps by 

minimizing the variance of the remainder component or 

by cross-validation [1, 28]. 

• Alternative Smoothing Methods: Applying the 

uncertainty propagation principles to other time series 

smoothing and decomposition techniques beyond Loess 

and STL (e.g., Singular Spectral Analysis [19, 20]). 

• Missing Data Handling: Explicitly modeling 

uncertainty due to missing data within the P-STD 

framework, rather than relying solely on imputation. 

• Causal Inference with Uncertainty: Extending the 

framework to incorporate uncertainty in causal 

relationships derived from decomposed time series. 

• Interactive Visualization Tools: Developing 

sophisticated interactive visualization tools specifically 

designed for P-STD output, allowing users to explore 

different levels of confidence, compare components, and 

interact with the uncertainty bands [4, 12]. 

• Scalability for Big Data: Investigating parallel and 

distributed computing strategies to handle very large 

time series datasets more efficiently while propagating 

uncertainty [30]. 

CONCLUSION 

This article has introduced and demonstrated a framework 

for Probabilistic Seasonal-Trend Decomposition (P-STD) 

based on Loess, which explicitly quantifies and propagates 

uncertainty through the decomposition of time series data. 

By providing confidence bands for trend, seasonal, and 

remainder components, P-STD moves beyond deterministic 

point estimates to offer a more comprehensive, reliable, and 

interpretable analysis of temporal patterns. The 

hypothetical results highlight its ability to adapt uncertainty 

representation based on data quality, improve 

interpretability for domain experts, and enhance the 

robustness of decision-making. This research contributes to 

the growing need for uncertainty-aware data analysis and 

visualization, paving the way for more informed and 

resilient insights from the vast amounts of time-oriented 

data generated across diverse applications. 
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