Jane Amedzro
1
Kennedy Oberhiri Obohwemu
1
Maame Ama Owusuaa-Asante
1
Gordon Mabengban Yakpir
1
Rabeea Rizwan
1
Samrina Afzal
1
Ibiangake Friday Ndioho
1
Gabriel Abayomi
1
Olusunmola Osinubi
1
Oluwadamilola R. Tayo
1
Samuel Oluwatosin Adejuyitan
1
Celestine Emeka Ekwuluo
1
Bartholomew Ituma Aleke
1
4
MPH, Faculty of Health Sciences, De Montfort University, Leicester, United Kingdom
4
PhD, Department of Health & Social Care, Scholars School System, Leeds Trinity University Partnership, Birmingham Campus, United Kingdom; and PENKUP Research Institute, Birmingham, United Kingdom
4
PhD, Department of Health, Wellbeing & Social Care, Oxford Brookes University, GBS Partnership, Birmingham, United Kingdom; and PENKUP Research Institute, Birmingham, United Kingdom
4
PhD, Department of Health, Wellbeing & Social Care, Oxford Brookes University, GBS Partnership, Birmingham, United Kingdom; and PENKUP Research Institute, Birmingham, United Kingdom
4
MPhil, Department of Health & Social Care, Scholars School System, Leeds Trinity University Partnership, Birmingham Campus, United Kingdom
4
Pharm. D, Department of Health & Social Care, Scholars School System, Leeds Trinity University Partnership, Birmingham Campus, United Kingdom
4
PhD, Department of Health and Care Management, Arden University, Manchester, United Kingdom; and PENKUP Research Institute, Birmingham, United Kingdom
4
PhD,Department of Health, Wellbeing & Social Care, Oxford Brookes University, GBS Partnership, Birmingham, United Kingdom; and PENKUP Research Institute, Birmingham, United Kingdom
4
PhD,Department of Health & Social Care, Scholars School System, Leeds Trinity University Partnership, Leicester Campus, United Kingdom; and PENKUP Research Institute, Birmingham, United Kingdom
4
MPH, Department of Health & Social Care, University of Wales Trinity Saint David, Institute of Inner-City Learning, London Campus, United Kingdom; and PENKUP Research Institute, Birmingham, United Kingdom
4
MSC, School of Business and Creative Industries, University of the West of Scotland, United Kingdom; and PENKUP Research
4
MPH, Department of Nutrition, Health Sector - Crisis Response, Family Health International, Ukraine; and PENKUP Research Institute, Birmingham, United Kingdom
4
PhD, Department of Health, Wellbeing & Social Care, Oxford Brookes University, GBS Partnership, Birmingham, United Kingdom; and PENKUP Research Institute, Birmingham, United Kingdom
Abstract
Background: Type 2 diabetes mellitus (T2DM) remains a significant global health challenge, disproportionately affecting individuals in low-income settings. Dietary interventions play a critical role in its management, with glycaemic index (GI) emerging as a key factor influencing glycaemic control.
Objective: This systematic review evaluates the effectiveness of low glycaemic index (LGI) diets compared to high glycaemic index (HGI) diets in managing T2DM among adults.
Methods: A comprehensive search was conducted across Cochrane Library, EMBASE, PubMed, and CINAHL databases for randomised controlled trials (RCTs) published between January 2004 and September 2016. No language restrictions were applied. Data extraction followed PRISMA guidelines, and analysis was performed using Review Manager 5.3. Risk of bias and study quality were assessed across all included trials.
Results: Six RCTs involving 604 adults met the inclusion criteria. Meta-analysis revealed that LGI diets led to a modest but statistically significant reduction in glycated haemoglobin (HbA1c) compared to HGI diets (mean difference: -0.11%; 95% CI: -0.22 to -0.01; p = 0.04), based on a fixed-effect model.
Conclusion: Incorporating LGI dietary strategies into the nutritional management of adults with T2DM yields a small yet clinically meaningful improvement in glycaemic control. These findings support the integration of GI-based dietary planning into broader diabetes care frameworks.
How to Cite
Jane Amedzro, Kennedy Oberhiri Obohwemu, Maame Ama Owusuaa-Asante, Gordon Mabengban Yakpir, Rabeea Rizwan, Samrina Afzal, … Bartholomew Ituma Aleke. (2025). Glycaemic Index and Lifestyle-Based Management of Type 2 Diabetes in Adults: A Systematic Review and Meta-Analysis of Clinical Outcomes. Frontiers in Medical and Clinical Sciences, 2(10), 28–37. https://doi.org/10.64917/fmcs/Volume02Issue10-03
📄American Diabetes Association. (2022). 6. Glycemic targets: Standards of Medical Care in Diabetes—2022. Diabetes Care, 45(Supplement 1), S83–S96. https://doi.org/10.2337/dc22-S006
📄American Diabetes Association Professional Practice Committee. (2024). 5. Facilitating Positive Health Behaviors and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes—2024. Diabetes Care, 47(Supplement 1), S77–S110. https://doi.org/10.2337/dc24-S005
📄Becker, G., & Goldfine, A. (2015). The first year: Type 2 diabetes: An essential guide for the newly diagnosed. Da Capo Press.
📄Boland, A., Cherry, M. G. & Dickson, R. (2014). Doing a systematic review: a student’s guide. London, United Kingdom: SAGE Publication.
📄Borenstein, M., Hedges, L., & Rothstein, H. (2007). Meta-analysis: Fixed effect vs. random effects. Meta-analysis. com.
📄Brahmi, F. A, & Gall, C. (2006). Endnote® and Reference Manager® citation formats compared to “instruction to authors” in top medical Journals. Medical Reference service Quarterly. 25(2), 49-57.
📄Brand-Miller, J., Hayne, S., Petocz, P., & Colagiuri, S. (2003). Low-glycemic index diets in the management of diabetes: A meta-analysis of randomized controlled trials. Diabetes Care, 26(8), 2261–2267. https://doi.org/10.2337/diacare.26.8.2261
📄Butt, M. D., Ong, S. C., Rafiq, A., Kalam, M. N., Sajjad, A., Abdullah, M., ... & Babar, Z. U. D. (2024). A systematic review of the economic burden of diabetes mellitus: contrasting perspectives from high and low middle-income countries. Journal of pharmaceutical policy and practice, 17(1), 2322107.
📄Chiavaroli, L., Lee, D., Ahmed, A., Cheung, A., Khan, T. A., Blanco, S., ... & Sievenpiper, J. L. (2021). Effect of low glycaemic index or load dietary patterns on glycaemic control and cardiometabolic risk factors in diabetes: systematic review and meta-analysis of randomised controlled trials. BMJ, 374, n1651. https://doi.org/10.1136/bmj.n1651
📄Chiavaroli, L., Lee, D., Ahmed, A., Cheung, A., Khan, T. A., Blanco, S., Mejia, S., Kendall, C. W. C., Sievenpiper, J. L., & Jenkins, D. J. A. (2021). Effect of low glycaemic index or load dietary patterns on glycaemic control and cardiometabolic risk factors in diabetes: systematic review and meta-analysis of randomised controlled trials. BMJ, *374*, n1651. https://doi.org/10.1136/bmj.n1651
📄da Rocha Fernandes, J., Ogurtsova, K., Linnenkamp, U., Guariguata, L., Seuring, T., Zhang, P., & Makaroff, L. E. (2016). IDF Diabetes Atlas estimates of 2014 global health expenditures on diabetes. Diabetes Research and Clinical Practice, 117, 48-54.
📄ElSayed, N. A., Grazia Aleppo, Bannuru, R. R., Beverly, E. A., Bruemmer, D., Collins, B., Darville, A., Laya Ekhlaspour, Hassanein, M., Hilliard, M. E., Johnson, E. L., Kamlesh Khunti, Ildiko Lingvay, Matfin, G., McCoy, R. G., Mary Lou Perry, Pilla, S. J., Polsky, S., Priya Prahalad, & Pratley, R. E. (2023). Facilitating Positive Health Behaviors and Well-being to Improve Health Outcomes: Standards of Care in Diabetes—2024. Diabetes Care, 47(Supplement_1), S77–S110. https://doi.org/10.2337/dc24-s005
📄Evans, M., Morgan, A. R., Patel, D., Dhatariya, K., Greenwood, S., Newland-Jones, P., ... & Dashora, U. (2021). Risk prediction of the diabetes missing million: identifying individuals at high risk of diabetes and related complications. Diabetes Therapy, 12(1), 87-105.
📄Goyal, R., Jialal, I., & Singhal, M. (2023, June 23). Type 2 diabetes. National Center for Biotechnology Information; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK513253/
📄GRADEpro GDT. (2015). GRADEpro Guideline Development Tool [Software]. McMaster University, 2015 (developed by Evidence Prime, Inc.). Computer program from www.gradepro.org.
📄He, K. J., Wang, H., Xu, J., Gong, G., Liu, X., & Guan, H. (2024). Global burden of type 2 diabetes mellitus from 1990 to 2021, with projections of prevalence to 2044: a systematic analysis across SDI levels for the global burden of disease study 2021. Frontiers in Endocrinology, 15, 1501690.
📄Herman, W. H., & Zimmet, P. (2012). Type 2 Diabetes: An Epidemic Requiring Global Attention and Urgent Action. Diabetes Care, 35(5), 943–944. https://doi.org/10.2337/dc12-0298
📄Higgins J. P.T & Green S. (2011). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 In: The Cochrane Library. Chichester, UK: John Wiley & Sons, Ltd.
📄Jenkins, D. J., Kendall, C. W., Augustin, L. S., Mitchell, S., Sahye-Pudaruth, S., Mejia, S. B., ... & Vidgen, E. (2012). Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Archives of internal medicine, 172(21), 1653-1660.
📄Jenkins, D. J., Kendall, C. W., McKeown-Eyssen, G., Josse, R. G., Silverberg, J., Booth, G. L., ... & Banach, M. S. (2008). Effect of a low–glycemic index or a high–cereal fiber diet on type 2 diabetes: a randomized trial. Jama, 300(23), 2742-2753.
📄Kaur, J., Kaur, K., Singh, B., Singh, A., & Sharma, S. (2022). Insights into the latest advances in low glycemic foods, their mechanism of action and health benefits. Journal of Food Measurement and Characterization, 16(1), 533-546. https://doi.org/10.1007/s11694-021-01179-z
📄Lee, J. H., Kin, W. Y., Kim, M, H., & Lee, Y. J. (1993). On the evaluation of Boolean operators in the extended Boolean retrieval framework. In proceedings of the 16th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 291-297). ACM.
📄Ling, C., Bacos, K., & Rönn, T. (2022). Epigenetics of type 2 diabetes mellitus and weight change—a tool for precision medicine?. Nature Reviews Endocrinology, 18(7), 433-448. https://doi.org/10.1038/s41574-022-00671-w
📄Liu, J., Bai, R., Chai, Z., Cooper, M. E., Zimmet, P. Z., & Zhang, L. (2022). Low-and middle-income countries demonstrate rapid growth of type 2 diabetes: an analysis based on Global Burden of Disease 1990–2019 data. Diabetologia, 65(8), 1339-1352. https://doi.org/10.1007/s00125-022-05713-6
📄Livesey, G., Taylor, R., Livesey, H. F., Buyken, A. E., Jenkins, D. J., Augustin, L. S., ... & Brand-Miller, J. C. (2019). Dietary glycemic index and load and the risk of type 2 diabetes: a systematic review and updated meta-analyses of prospective cohort studies. Nutrients, 11(6), 1280. https://doi.org/10.3390/nu11061280
📄Moher, D., Tetzlaff, J., Tricco, A., Sampson M., & Altman, D. G. (2007). Epidemiology and reporting charateristics of systematic reviews. PloS Med, 4(78).
📄Moher, D., Liberati. A., Tetzlaff, J. & Altman, D. G. (2009). Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS. The PRISMA Group Preferred Med 6(6): e1000097. doi:10.1371/journal. pmed1000097
📄Neuenschwander, M., Ballon, A., Weber, K. S., Norat, T., Aune, D., Schwingshackl, L., & Schlesinger, S. (2019). Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ, 366, e071989. https://doi.org/10.1136/bmj-2022-071989
📄Ong, K. L., Stafford, L. K., McLaughlin, S. A., Boyko, E. J., Vollset, S. E., Smith, A. E., ... & Brauer, M. (2023). Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet, 402(10397), 203-234. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(23)01301-6/fulltext
📄Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj, 372.
📄Peres, M., Costa, H. S., Silva, M. A., & Albuquerque, T. G. (2023). The health effects of low glycemic index and low glycemic load interventions on prediabetes and type 2 diabetes mellitus: a literature review of RCTs. Nutrients, 15(24), 5060. https://doi.org/10.3390/nu15245060
📄Phelps, N. H., Singleton, R. K., Zhou, B., et al., (2024). Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. The Lancet, 403(10431). https://doi.org/10.1016/s0140-6736(23)02750-2
📄Reynolds, A. N., Akerman, A. P., & Mann, J. (2020). Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLOS Medicine, 20(3), e1004123. https://doi.org/10.1371/journal.pmed.1004123
📄Rizkalla, S. W., Taghrid, L., Laromiguiere, M., Huet, D., Boillot, J., Rigoir, A., ... & Slama, G. (2004). Improved plasma glucose control, whole-body glucose utilization, and lipid profile on a low-glycemic index diet in type 2 diabetic men a randomized controlled trial. Diabetes care, 27(8), 1866-1872.
📄Sabarathinam, S. (2023). A glycemic diet improves the understanding of glycemic control in diabetes patients during their follow-up. Future Science OA, 9(3), FSO843. https://doi.org/10.2144/fsoa-2022-0058
📄Schünemann, H., Brożek. J., Guyatt, G., Oxman, A. (2013) GRADE handbook for grading quality of evidence and strength of recommendations. The GRADE Working Group, 2013. Retrieved from guidelinedevelopment.org/handbook.
📄Shrier, I., Christensen, R., Juhl, C., & Beyene, J. (2016). Meta-analysis on continuous outcomes in minimal important difference units: an application with appropriate variance calculations. Journal of Clinical Epidemiology.
📄Tay, J., Luscombe-Marsh, N. D., Thompson, C. H., Noakes, M., Buckley, J. D., Wittert, G. A., ... & Brinkworth, G. D. (2014). A very low-carbohydrate, low–saturated fat diet for type 2 diabetes management: a randomized trial. Diabetes Care, 37(11), 2909-2918.
📄Tay, J., Luscombe-Marsh, N. D., Thompson, C. H., Noakes, M., Buckley, J. D., Wittert, G. A., ... & Brinkworth, G. D. (2015). Comparison of low-and high-carbohydrate diets for type 2 diabetes management: a randomized trial. The American journal of clinical nutrition, 102(4), 780-790.
📄The Cochrane Collaboration. (2014). Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre.
📄Thomas, D. & Elliott, E. J. (2009). Low glycaemic index, or low glycaemic load, diets for diabetes mellitus. The Cochrane Library.
📄Thomas, D. E., & Elliott, E. J. (2010). The use of low-glycaemic index diets in diabetes control. British Journal of Nutrition, 104(6), 797-802. https://doi.org/10.1017/S0007114510001534
📄Westman, Eric C., et al. "The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus." Nutrition & Metabolism 5.1 (2008): 1.
📄Xie, J., Wang, M., Long, Z., Ning, H., Li, J., Cao, Y., Liao, Y., Liu, G., Wang, F., & Pan, A. (2022). Global burden of type 2 diabetes in adolescents and young adults, 1990-2019: systematic analysis of the Global Burden of Disease Study 2019. BMJ, 379, e072385. https://doi.org/10.1136/bmj-2022-072385.
📄Zafar, M. I., Mills, K. E., Zheng, J., et al. (2019). Low-glycemic index diets as an intervention for diabetes: a systematic review and meta-analysis. The American Journal of Clinical Nutrition, 110(4), 891–902.
📄Zafar, M. I., Mills, K. E., Zheng, J., Peng, M. M., Ye, X., & Chen, L. L. (2019). Low-glycemic index diets as an intervention for diabetes: a systematic review and meta-analysis. The American Journal of Clinical Nutrition, 110(4), 891–902. https://doi.org/10.1093/ajcn/nqz149.