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ABSTRACT 

Lung cancer remains a leading cause of cancer-related mortality worldwide [1, 2]. Early detection through low-dose 

computed tomography (LDCT) screening has been shown to reduce mortality [3, 4, 5]. A critical step in the analysis of LDCT 

scans for lung cancer screening is the accurate segmentation of pulmonary nodules. Manual segmentation is time-consuming 

and subject to inter-observer variability. Automated segmentation methods, particularly those leveraging deep learning, 

offer a promising alternative [13, 14, 15, 16, 17]. This paper proposes a method for automated pulmonary nodule 

segmentation in LDCT scans utilizing 3D residual networks and a dynamic patch-based sampling strategy. The use of 3D 

networks is motivated by their ability to capture volumetric context, which is crucial for analyzing 3D medical images [7, 8, 

9]. An adaptive patch sampling approach is employed to address the class imbalance inherent in medical image 

segmentation, where nodules occupy a small fraction of the total volume. We describe the methodology, including data 

preprocessing using the Lung Image Database Consortium (LIDC-IDRI) dataset [12], the architecture of the 3D residual 

segmentation network, the dynamic patch sampling strategy, and the training procedure. The potential impact of this 

approach on improving the accuracy and efficiency of lung cancer screening is discussed. 

KEYWORDS: Pulmonary Nodule Segmentation, Low-Dose CT, Deep Learning, 3D Convolutional Neural Networks, Residual 

Networks, Patch-Based Sampling, Lung Cancer Screening, LIDC-IDRI. 

INTRODUCTION 

Lung cancer is a significant global health challenge, with 

millions of new cases and deaths reported annually [1, 6]. 

Early detection is paramount for improving patient 

outcomes [3]. Low-dose computed tomography (LDCT) has 

emerged as an effective screening tool for individuals at high 

risk of lung cancer [4, 5]. LDCT scans can reveal pulmonary 

nodules, which are small lesions in the lungs that may be 

benign or malignant. Accurate identification and 

characterization of these nodules are essential for diagnosis 

and treatment planning. 

Pulmonary nodule segmentation, the process of delineating 

the precise boundaries of a nodule within a CT scan, is a 

fundamental step in computer-aided diagnosis (CAD) 

systems for lung cancer [13]. Accurate segmentation is 

necessary for downstream tasks such as nodule 

measurement, classification, and tracking changes over time. 

However, manual segmentation by radiologists is a laborious 

process, particularly in large-scale screening programs. 

Furthermore, the subjective nature of manual delineation 

can lead to variability between observers. 

The advent of deep learning has revolutionized medical 

image analysis, offering powerful tools for automated 

segmentation [14, 15, 16, 17]. Convolutional Neural 

Networks (CNNs) have demonstrated remarkable success in 

various medical imaging tasks. For volumetric data like CT 

scans, 3D CNNs are particularly well-suited as they can 

capture spatial context across slices, unlike 2D CNNs that 

process each slice independently [7, 8, 9]. Residual 

networks, with their ability to train very deep architectures 

by mitigating the vanishing gradient problem, have shown 

state-of-the-art performance in numerous image recognition 

and segmentation tasks [9, 11]. 

Despite the promise of deep learning, pulmonary nodule 

segmentation presents several challenges. Nodules exhibit 

significant variations in size, shape, density, and location. 

They can be attached to the pleura or vessels, making 

boundary delineation difficult. Furthermore, the vast 

majority of voxels in a CT scan represent healthy lung tissue 

or background, leading to a severe class imbalance problem 

where nodule voxels are a small minority. Training deep 
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learning models on such imbalanced data can result in 

models biased towards the background class, leading to poor 

segmentation performance on nodules. 

Patch-based training is a common strategy to handle large 

3D medical volumes and address class imbalance [34]. 

Instead of processing the entire volume at once, the network 

is trained on smaller 3D patches extracted from the scans. By 

strategically sampling patches that contain nodules, the 

model can be exposed to a more balanced distribution of 

nodule and non-nodule examples. However, static patch 

sampling methods may not fully capture the variability of 

nodule appearances or efficiently utilize the available data. 

This paper proposes a novel approach for pulmonary nodule 

segmentation in LDCT scans that combines the power of 3D 

residual networks with a dynamic patch-based sample 

generation strategy. The dynamic sampling aims to 

adaptively select patches during training, potentially 

focusing on challenging regions or under-represented 

nodule types to improve segmentation accuracy. We 

hypothesize that this combination will lead to a robust and 

accurate automated segmentation method for lung nodules, 

thereby enhancing the efficiency and effectiveness of LDCT-

based lung cancer screening programs. 

METHODS 

2.1. Dataset 

This study utilizes the Lung Image Database Consortium and 

Image Database Resource Initiative (LIDC-IDRI) dataset 

[12]. The LIDC-IDRI dataset is a publicly available collection 

of thoracic CT scans with annotated pulmonary nodules. 

Each scan contains annotations from up to four experienced 

thoracic radiologists, who marked the locations and 

boundaries of identified nodules. For this study, we focus on 

nodules annotated as 3 mm or larger in diameter, as these 

are typically considered clinically significant in screening 

programs [3]. The dataset provides consensus annotations, 

which are generated by aggregating the individual 

radiologist annotations, providing a valuable ground truth 

for training and evaluation. 

2.2. Data Preprocessing 

The raw CT scans from the LIDC-IDRI dataset are provided 

in DICOM format. Preprocessing steps are necessary to 

prepare the data for input into the deep learning model. 

These steps include: 

• Loading and Resampling: The DICOM images are loaded, 

and the pixel intensities are converted to Hounsfield 

Units (HU) [33]. To ensure consistent input dimensions 

and reduce computational complexity, the volumes are 

resampled to a uniform isotropic resolution (e.g., 1 mm 

x 1 mm x 1 mm). 

• Intensity Windowing: The HU values are windowed to a 

specific range relevant to lung tissue and nodules (e.g., -

1000 HU to -400 HU) to enhance contrast and remove 

irrelevant structures like bone and air outside the lungs. 

• Lung Segmentation: An automated lung segmentation 

algorithm is applied to create a mask that isolates the 

lung regions, reducing the search space for nodule 

segmentation and removing potential false positives 

outside the lungs. 

• Normalization: The intensity values within the lung 

mask are normalized to a standard range (e.g., [0, 1] or 

[-1, 1]) to facilitate stable training of the neural network. 

The ground truth segmentation masks for the nodules are 

generated from the consensus annotations provided in the 

LIDC-IDRI dataset. For each nodule, a binary mask is created 

where voxels belonging to the nodule are assigned a value of 

1, and background voxels are assigned a value of 0. 

2.3. Dynamic Patch-Based Sample Generation 

To address the challenges of large data volume and class 

imbalance, we employ a dynamic patch-based sampling 

strategy during training. Instead of extracting a fixed set of 

patches before training, patches are sampled on-the-fly 

during each training epoch. This dynamic approach allows 

for greater variability in the training data and can be adapted 

to focus on specific types of patches. 

The sampling strategy involves prioritizing patches that 

contain nodule voxels. During each iteration, a certain 

proportion of patches are sampled centered around known 

nodule locations, ensuring that the network is frequently 

exposed to positive examples. The remaining patches are 

sampled randomly from the lung region. 

Furthermore, the dynamic sampling can incorporate 

strategies to address challenging cases. For instance, patches 

containing nodules that were poorly segmented in previous 

epochs or patches with ambiguous boundaries can be 

sampled more frequently. This adaptive sampling 

mechanism helps the model learn to segment difficult 

nodules and reduces bias towards easy examples. The size of 

the patches is chosen to be large enough to capture sufficient 

context around the nodule while remaining computationally 

manageable for the 3D network. 

2.4. Network Architecture: 3D Residual Network 

The core of our segmentation method is a 3D residual 

network. Residual networks [9, 11] are chosen for their 

ability to train deep models effectively, which is crucial for 

learning complex volumetric features. The network 

architecture is based on an encoder-decoder structure, 

commonly used for semantic segmentation tasks. 

The encoder path consists of a series of 3D convolutional 

layers, batch normalization, activation functions (e.g., ReLU), 

and residual blocks. Max pooling or strided convolutions are 
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used to progressively downsample the feature maps, 

increasing the receptive field and capturing hierarchical 

features. Residual connections within the encoder blocks 

allow gradients to flow more easily through the network, 

enabling the training of deeper models. 

The decoder path upsamples the feature maps from the 

encoder using transposed convolutions or trilinear 

interpolation. Skip connections are incorporated to connect 

feature maps from the encoder to the corresponding layers 

in the decoder. These skip connections help the decoder 

recover spatial details lost during downsampling in the 

encoder, leading to more precise segmentation boundaries. 

The decoder also includes 3D convolutional layers, batch 

normalization, and activation functions. 

The final layer of the decoder is a 3D convolutional layer with 

a single output channel and a sigmoid activation function, 

producing a probability map where each voxel represents 

the likelihood of belonging to a pulmonary nodule. 

The use of 3D convolutions allows the network to learn 

spatial relationships and patterns in all three dimensions, 

which is essential for accurately segmenting nodules within 

the complex 3D structure of the lungs. 

2.5. Training Details 

The network is trained using the preprocessed LIDC-IDRI 

data and the dynamic patch-based sampling strategy. The 

training process involves minimizing a loss function that 

measures the difference between the network's predicted 

segmentation map and the ground truth segmentation mask. 

A common loss function for medical image segmentation is 

the Dice loss or a combination of Dice loss and binary cross-

entropy loss, which are effective in handling class imbalance. 

The network is trained using an optimization algorithm such 

as Adam or Stochastic Gradient Descent (SGD) [35]. The 

learning rate is typically set with a decay schedule to allow 

the model to converge effectively. Training is performed for 

a fixed number of epochs, with validation performed 

periodically on a separate set of scans to monitor 

performance and prevent overfitting. Data augmentation 

techniques, such as random rotations, translations, and 

scaling of the patches, can be applied online during training 

to increase the variability of the training data and improve 

the model's generalization ability. 

2.6. Evaluation Metrics 

The performance of the segmentation method is evaluated 

using standard metrics for binary segmentation tasks. These 

metrics are computed by comparing the predicted 

segmentation mask to the ground truth mask for each 

nodule. Key evaluation metrics include: 

• Dice Similarity Coefficient (DSC): Measures the overlap 

between the predicted segmentation and the ground 

truth. A DSC of 1 indicates perfect overlap. 

• Sensitivity: Measures the proportion of true nodule 

voxels that are correctly identified. 

• Specificity: Measures the proportion of true background 

voxels that are correctly identified. 

• Precision: Measures the proportion of predicted nodule 

voxels that are actually true nodule voxels. 

• Volume Similarity: Measures the similarity in volume 

between the predicted segmentation and the ground 

truth. 

These metrics provide a quantitative assessment of the 

segmentation accuracy and can be used to compare the 

performance of different methods. 

RESULTS 

(Note: As this is a theoretical article outline, specific 

quantitative results are not available. In a real research paper, 

this section would present the outcomes of the experiments.) 

The performance of the proposed method was evaluated on 

a test set of LDCT scans from the LIDC-IDRI dataset. The 

model's segmentation accuracy was assessed using the 

evaluation metrics described in Section 2.6. Table 1 

summarizes the quantitative results obtained on the test set. 

Metric Value 

Dice Similarity Coefficient X.XX 

Sensitivity X.XX 

Specificity X.XX 

Precision X.XX 

Volume Similarity X.XX 

Figure 1 shows visual examples of the segmentation results 

obtained by the proposed method on representative nodules 

from the test set. The predicted segmentation masks are 

overlaid on the original CT slices, demonstrating the model's 

ability to delineate nodule boundaries. 

The results indicate that the proposed method achieves 

promising segmentation performance, demonstrating the 

effectiveness of combining 3D residual networks with 

dynamic patch-based sampling for pulmonary nodule 

segmentation in LDCT scans. 

DISCUSSION 

The accurate and automated segmentation of pulmonary 

nodules in LDCT scans is a critical step towards improving 

lung cancer screening programs. This paper presented a 

method leveraging 3D residual networks and a dynamic 

patch-based sampling strategy to address the challenges 

associated with this task, including the volumetric nature of 
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CT data, the variability of nodule appearance, and the severe 

class imbalance. 

The use of 3D residual networks allows the model to 

effectively capture the three-dimensional context of nodules, 

which is essential for distinguishing them from surrounding 

structures and accurately delineating their boundaries [7, 8, 

9, 30]. The residual connections facilitate the training of 

deeper networks, enabling the model to learn more complex 

and discriminative features for segmentation. Recent studies 

have also highlighted the benefits of 3D networks for 

medical image segmentation [9, 20, 23, 24, 25, 26, 28, 29, 30]. 

The dynamic patch-based sampling strategy plays a crucial 

role in addressing the class imbalance problem inherent in 

nodule segmentation. By prioritizing patches containing 

nodules and potentially focusing on challenging examples, 

the model is exposed to a more balanced distribution of 

positive and negative samples during training. This helps to 

mitigate the bias towards the background class and 

improves the model's ability to correctly identify and 

segment nodule voxels. Traditional static sampling methods 

may not be as effective in capturing the full variability of 

nodules or adapting to the learning process. 

While the specific quantitative results were not presented in 

this theoretical outline, the proposed methodology aligns 

with recent advancements in deep learning for medical 

image analysis [14, 15, 16, 17]. Various deep learning 

architectures have been explored for pulmonary nodule 

segmentation, including variations of U-Net and V-Net [9, 20, 

24, 30], often incorporating attention mechanisms [22, 24, 

25, 36] or dual-branch structures [21, 27, 28, 29] to improve 

performance. The dynamic sampling approach proposed 

here complements these architectural advancements by 

providing a more effective way to train models on 

imbalanced volumetric data. 

Limitations of this approach may include the computational 

resources required for training 3D networks and the need 

for a sufficiently large annotated dataset like LIDC-IDRI [12]. 

The effectiveness of the dynamic sampling strategy is also 

dependent on the specific implementation and the criteria 

used for prioritizing patches. Future work could involve 

exploring more sophisticated dynamic sampling techniques, 

investigating the impact of different residual network 

architectures, and evaluating the method on diverse datasets 

to assess its generalizability. Furthermore, integrating this 

segmentation method into a complete CAD system for lung 

cancer screening would require further validation and 

clinical evaluation. 

CONCLUSION 

This paper outlined a method for automated pulmonary 

nodule segmentation in low-dose CT scans for lung cancer 

screening using 3D residual networks and a dynamic patch-

based sample generation strategy. The approach leverages 

the volumetric feature learning capabilities of 3D networks 

and addresses class imbalance through adaptive patch 

sampling. While specific experimental results were not 

presented, the proposed methodology represents a 

promising direction for improving the accuracy and 

efficiency of nodule segmentation, a critical step in early lung 

cancer detection. Further research and validation are 

needed to fully assess its clinical utility and integrate it into 

practical screening workflows. 
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