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ABSTRACT 

Accurate and real-time prediction of complex fluid dynamics, particularly unsteady multiphase flows in adaptive hydraulic 

infrastructures, is crucial for optimizing performance, ensuring safety, and enabling intelligent control. Traditional 

Computational Fluid Dynamics (CFD) methods, while powerful, often incur prohibitive computational costs and time for 

such dynamic, high-fidelity simulations. This article explores the emerging paradigm of physics-guided deep learning, 

specifically focusing on hybrid physics-informed neural solvers, as a transformative approach to overcome these limitations. 

We delve into the theoretical underpinnings of Physics-Informed Neural Networks (PINNs), their advancements, and how 

hybrid models integrate sparse data with fundamental physical laws (e.g., Navier-Stokes equations) to enable rapid and 

accurate predictions of turbulent, unsteady multiphase flow phenomena. The discussion highlights their potential for real-

time operational insights, predictive maintenance, and adaptive control in complex hydraulic systems such as dams, 

spillways, and smart water networks. Key challenges related to scalability, training stability, and real-world deployment are 

also addressed, alongside promising future research directions in this rapidly evolving field. 

KEYWORDS: Physics-guided deep learning, real-time simulation, unsteady multiphase flows, dynamic hydraulic 

systems, computational fluid dynamics, data-driven modeling, hybrid modeling, flow prediction, machine learning, 

fluid-structure interaction. 

INTRODUCTION 

The accurate simulation and prediction of fluid flow 

phenomena are foundational to a myriad of engineering 

disciplines, ranging from aerospace and automotive design 

to environmental management and civil infrastructure [5, 

13]. Within the domain of hydraulic engineering, 

understanding the complex dynamics of unsteady 

multiphase flows (e.g., water-air interactions, sediment 

transport, or cavitation in pipelines and open channels) is 

paramount for the design, operation, and maintenance of 

critical infrastructure such as dams, spillways, pumps, and 

adaptive water distribution networks [20]. Traditional 

Computational Fluid Dynamics (CFD) approaches, while 

highly effective in resolving intricate flow features, are often 

computationally intensive, demanding significant time and 

resources, especially for transient (unsteady) simulations 

and complex multiphase interactions [5]. This 

computational burden severely limits their utility in 

applications requiring real-time prediction, rapid decision-

making, or the intelligent control of dynamic hydraulic 

infrastructures. 

The advent of deep learning has revolutionized numerous 

fields, offering powerful tools for pattern recognition, 

prediction, and optimization from large datasets. However, 

applying purely data-driven deep learning models to 

complex physical systems like fluid dynamics poses 

significant challenges. These models typically require vast 

amounts of high-quality, labeled data (which is expensive to 

obtain for CFD simulations), and their predictions may not 

inherently adhere to fundamental physical laws, potentially 

leading to physically inconsistent or unstable solutions, 

particularly when extrapolating beyond training data [2, 14]. 

To bridge this gap between data-driven efficiency and 

physical fidelity, the paradigm of "physics-informed neural 

networks" (PINNs) has emerged as a promising solution [1, 

3, 6, 7]. PINNs integrate the governing partial differential 

equations (PDEs) directly into the neural network's loss 

function, allowing the network to learn solutions that are 

consistent with the underlying physics, even with limited 

observational data [1, 14]. This approach has opened new 

avenues for solving complex forward and inverse problems 

in fluid mechanics [1, 6, 7, 13]. 

Building upon the foundation of PINNs, "hybrid physics-

informed neural solvers" represent a further evolution, 

combining the strengths of physics-based modeling with 
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data-driven learning more flexibly [4, 5, 15]. These hybrid 

approaches can integrate sparse experimental data or coarse 

CFD outputs with physical constraints, offering improved 

robustness, generalization, and computational efficiency for 

challenging problems like real-time turbulence prediction in 

unsteady multiphase flows [4, 5, 14, 15, 20]. For adaptive 

hydraulic infrastructures, which require continuous 

monitoring and dynamic adjustments, such real-time 

prediction capabilities are transformative. This article aims 

to provide a comprehensive overview of hybrid physics-

informed neural solvers for real-time turbulence prediction 

in unsteady multiphase flows across adaptive hydraulic 

infrastructures, highlighting their methodological 

underpinnings, expected results, and the challenges and 

opportunities for future research. 

METHODS 

The methodology for developing and applying hybrid 

physics-informed neural solvers for fluid dynamics involves 

a sophisticated integration of deep learning architectures 

with fundamental physical principles. This section outlines 

the key components and strategies employed. 

Physics-Informed Neural Networks (PINNs) Foundation 

At the core of these solvers are Physics-Informed Neural 

Networks (PINNs) [1, 2, 3]. Unlike traditional neural 

networks that learn mappings solely from input-output data 

pairs, PINNs embed the governing partial differential 

equations (PDEs) directly into their architecture or, more 

commonly, into their loss function. 

• Architecture: A standard feedforward neural network 

(Multi-Layer Perceptron) typically serves as the 

approximation function for the unknown solution fields 

(e.g., velocity components, pressure, volume fractions 

for multiphase flows). The inputs to the network are the 

independent variables (e.g., spatial coordinates x, y, z, 

and time t). 

• Physics-informed Loss Function: The loss function for 

a PINN is composed of several terms: 

o PDE Residual Loss (LPDE): This term 

penalizes deviations from the governing PDEs 

(e.g., Navier-Stokes equations for fluid flow [7]) 

at a set of collocation points within the 

computational domain. The derivatives 

required for the PDEs are computed using 

automatic differentiation, a key feature of deep 

learning frameworks [1]. This ensures that the 

learned solution inherently satisfies the 

physical laws [1, 6, 7, 13, 14]. 

o Boundary Condition (BC) Loss (LBC): 

Enforces satisfaction of known boundary 

conditions (e.g., no-slip walls, inlet/outlet 

velocities) at the domain boundaries. 

o Initial Condition (IC) Loss (LIC): Ensures the 

solution matches known initial states at time 

t=0. 

o Data Loss (LData): (Optional, but often 

included in hybrid approaches) This term 

penalizes mismatches between the network's 

predictions and any available sparse 

observational data or high-fidelity CFD data 

[14]. 

The total loss function is a weighted sum of these terms: 

LTotal=wPDELPDE+wBCLBC+wICLIC+wDataLData [1]. The 

network's parameters (weights and biases) are optimized to 

minimize this total loss. 

• Advantages: PINNs are particularly powerful for 

solving forward and inverse problems, even with limited 

or no labeled data, as the physics itself acts as a strong 

regularizer. This reduces reliance on extensive data 

collection campaigns and ensures physical consistency 

[14]. Deep learning libraries like DeepXDE [3] facilitate 

the implementation of PINNs. 

Hybrid Physics-Data Driven Approaches for Turbulence 

and Multiphase Flows 

While PINNs provide a strong foundation, their application 

to highly complex phenomena like unsteady turbulence and 

multiphase flows presents challenges, particularly regarding 

training stability and scalability for high-dimensional 

problems [2]. Hybrid approaches aim to mitigate these 

issues by more flexibly combining physics and data [4, 5, 15, 

20]. 

• Operator Learning (Physics-Constrained Neural 

Operators): Instead of learning the solution directly, 

some approaches focus on learning the underlying 

operators or discretizations of the PDEs [15, 16, 17]. 

This can lead to models that generalize better across 

different geometries and boundary conditions without 

retraining for each new scenario. "Solver-in-the-loop" 

methods integrate differentiable physics simulators 

directly into the training process to design neural 

operators [15]. 

• Data-Assisted Turbulence Modeling: Traditional 

turbulence models (e.g., Reynolds-Averaged Navier-

Stokes, RANS) rely on closure relations that are often 

empirical and lack universality [18]. Hybrid approaches 

can use neural networks to learn improved RANS 

closure models, leveraging sparse high-fidelity data (e.g., 

from DNS or experimental measurements) while 

ensuring physical constraints (e.g., Galilean invariance) 

are embedded [18, 19]. This improves the accuracy of 

turbulence predictions without the computational cost 

of direct numerical simulation (DNS) [19]. 

• Physics-Constrained Auto-Regressive Networks: For 

dynamic systems, deep auto-regressive networks can be 
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constrained by PDE dynamics to model time-series 

evolution of flow fields, offering efficiency for unsteady 

predictions [4]. 

• Transfer Learning for Efficiency: Given the variety of 

hydraulic infrastructures and flow conditions, transfer 

learning techniques can be employed [20]. A model 

trained on one set of flow conditions or geometries can 

be fine-tuned with limited data for new, unseen 

conditions, significantly accelerating deployment and 

reducing training costs for real-time applications [20]. 

Application to Unsteady Multiphase Flows in Adaptive 

Hydraulic Infrastructures 

The focus of these hybrid solvers is on capturing the 

transient and complex interactions within multiphase flows 

in environments where conditions can change dynamically. 

• Unsteady Multiphase Flow Modeling: This involves 

simultaneously tracking multiple immiscible phases 

(e.g., water and air, or water and sediment particles) and 

their interfaces over time. The governing equations 

become more complex, often including interface 

tracking methods (e.g., Volume of Fluid - VOF) [20]. 

Hybrid PINN-based approaches can directly learn these 

complex interactions, including phase transition, bubble 

dynamics, or free surface flows, in a time-dependent 

manner [20]. 

• Adaptive Hydraulic Infrastructures: These are 

systems designed to dynamically adjust their 

configuration or operation in response to changing 

conditions (e.g., smart dams adjusting gate openings 

based on upstream flow, or adaptive pipeline networks 

optimizing pressure and flow). Real-time accurate flow 

prediction is critical for the effective control of such 

systems. Hybrid solvers, with their speed, can provide 

the necessary predictive capability for real-time 

optimization and operational decision-making [5, 20]. 

• Turbulence Prediction: Accurate turbulence 

prediction in these environments (e.g., high Reynolds 

number flows in spillways, turbulent mixing zones) is 

crucial. Hybrid models can provide physically consistent 

turbulence fields, even for unsteady scenarios, by 

blending physics with data-driven closure models [18, 

19]. 

Numerical Implementation and Training Strategy 

The practical implementation of these hybrid solvers 

typically involves: 

• Data Generation: For hybrid approaches, sparse data 

can be generated from limited high-fidelity CFD 

simulations (e.g., OpenFOAM, ANSYS Fluent) or 

experimental measurements [5, 14]. This data is used to 

augment the physics-informed loss terms. 

• Deep Learning Frameworks: Libraries like 

TensorFlow or PyTorch are used to build and train the 

neural networks. DeepXDE [3] is a specialized library for 

PINNs. 

• Optimization Algorithms: Adam optimizer or L-BFGS 

are commonly used for training, with careful 

consideration of learning rates and weighting of 

different loss terms to ensure stable convergence [1, 2]. 

• Computational Resources: Training these complex 

models often requires significant computational power, 

including GPUs. 

This comprehensive methodology allows for the 

development of intelligent, physically consistent, and 

computationally efficient solvers for challenging fluid 

dynamics problems in the context of dynamic hydraulic 

systems. 

RESULTS (Anticipated Outcomes and Contributions) 

The application of hybrid physics-informed neural solvers to 

real-time turbulence prediction in unsteady multiphase 

flows across adaptive hydraulic infrastructures is expected 

to yield transformative results, addressing long-standing 

limitations of traditional approaches. 

Enhanced Accuracy and Physical Consistency 

• Accurate Turbulence Modeling: These solvers are 

anticipated to provide significantly more accurate 

predictions of turbulent flow structures and their 

evolution over time compared to traditional RANS 

models with fixed closure assumptions. By embedding 

physical invariants and constraints into the neural 

network, the models can learn improved turbulence 

closures directly from data while maintaining physical 

consistency [18, 19]. 

• Realistic Multiphase Interface Dynamics: For 

unsteady multiphase flows, the hybrid solvers are 

expected to accurately capture the dynamic evolution of 

interfaces (e.g., free surface deformation, bubble 

formation and collapse, jet breakup). The physics-

informed nature helps in maintaining mass and 

momentum conservation across these interfaces, 

leading to more realistic simulations than purely data-

driven models might achieve [20]. 

• Generalization to Unseen Conditions: Due to the 

incorporation of physical laws, the trained models are 

expected to generalize well to flow conditions or slightly 

modified geometries that were not explicitly part of the 

training data set [14]. This is a crucial advantage over 

purely data-driven surrogates that often struggle with 

extrapolation. 

Drastic Reduction in Computational Cost and Real-time 

Capability 
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• Orders of Magnitude Speed-Up: The primary 

advantage is the anticipated drastic reduction in 

computational time required for simulation. Once 

trained, the inference (prediction) time of a neural 

network is typically orders of magnitude faster than 

iterative CFD solvers for unsteady problems [5]. This 

allows for near real-time prediction of complex flow 

fields. 

• Enabling Real-time Control and Optimization: The 

real-time prediction capability directly enables 

applications in adaptive hydraulic infrastructures. 

Operators can obtain immediate insights into flow 

behavior in response to control actions (e.g., gate 

adjustments), facilitating dynamic optimization of 

energy efficiency, water resource management, or flood 

control [5, 20]. 

• Accelerated Design and Analysis: Rapid simulation 

turnaround times will accelerate the design iteration 

process for new hydraulic components and 

infrastructure layouts, allowing engineers to explore a 

wider design space efficiently. 

Robustness and Adaptability to Dynamic Environments 

• Handling Unsteady and Transient Phenomena: The 

frameworks are designed to handle inherent 

unsteadiness in flows, capturing transient events and 

their propagation more effectively than quasi-steady 

approximations [4, 6]. 

• Adaptive Infrastructure Integration: The ability to 

rapidly re-evaluate flow conditions in response to 

changes in infrastructure configuration (e.g., valve 

opening/closing, pipe reconfiguration) makes these 

solvers ideal for "smart" or adaptive hydraulic systems, 

offering predictive capabilities for operational 

adjustments [20]. 

• Data Efficiency: While hybrid models can leverage 

sparse data, their physics-informed nature means they 

require significantly less labeled data than purely data-

driven models to achieve robust and accurate 

predictions [14]. This is particularly beneficial in 

complex scenarios where high-fidelity simulation data is 

scarce or expensive to generate. 

Potential for Uncertainty Quantification 

• Probabilistic Predictions: Advanced variants of these 

solvers can potentially provide not only point 

predictions but also quantify the uncertainty associated 

with those predictions [14]. This is vital for risk 

assessment and robust decision-making in critical 

hydraulic infrastructure applications. 

In essence, the expected results demonstrate that hybrid 

physics-informed neural solvers offer a paradigm shift in 

fluid dynamics simulation, providing accurate, real-time, and 

physically consistent predictions for the intricate, dynamic, 

and often turbulent multiphase flows prevalent in modern 

hydraulic systems. 

DISCUSSION 

The promising results anticipated from hybrid physics-

informed neural solvers represent a significant leap forward 

in the simulation and prediction of complex fluid dynamics, 

with profound implications for adaptive hydraulic 

infrastructure. This discussion elaborates on the advantages 

of this emerging paradigm, explores its transformative 

potential, and addresses the remaining challenges and future 

research avenues. 

Advantages Over Conventional and Pure Data-Driven 

Methods 

The primary strength of hybrid physics-informed neural 

solvers lies in their ability to judiciously combine the 

strengths of both traditional CFD and pure data-driven deep 

learning, while mitigating their respective weaknesses. 

• Bridging Speed and Accuracy: Traditional CFD, while 

highly accurate, is often too slow for real-time 

applications, especially for unsteady multiphase flows 

[5]. Pure data-driven models, though fast in inference, 

often lack physical consistency and struggle with 

generalization to unseen conditions, requiring massive 

datasets for training. Hybrid solvers, by embedding 

physics, achieve real-time prediction speeds while 

ensuring adherence to fundamental laws, even with 

sparse data [1, 5, 14, 20]. This makes them superior to 

"black-box" data-driven models for physical systems 

[14]. 

• Reduced Data Dependency: Unlike purely data-driven 

deep learning models, which are notoriously data-

hungry, PINN-based approaches require significantly 

less labeled training data because the physics encoded 

in the loss function guides the learning process [1, 14]. 

This is a critical advantage in fluid dynamics, where 

high-fidelity simulation or experimental data is often 

costly and time-consuming to obtain. 

• Enhanced Generalization: The incorporation of 

physical laws acts as a strong regularizer, enabling these 

models to generalize more effectively to new scenarios 

or operating conditions outside the exact training 

distribution, a common weakness of purely empirical 

models [14]. This robustness is crucial for real-world 

hydraulic systems that operate under variable 

conditions. 

• Flexibility in Turbulence Modeling: For turbulence 

prediction, directly learning improved RANS closure 

models from data, while respecting physical invariants, 

offers a pathway to more accurate and versatile 
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turbulence models than conventional empirical closures 

[18, 19]. 

Transformative Potential for Adaptive Hydraulic 

Infrastructure 

The real-time prediction capabilities offered by these solvers 

are genuinely transformative for adaptive hydraulic 

infrastructures. 

• Intelligent Control and Optimization: For systems like 

smart dams or dynamic water networks, real-time 

predictions of flow velocities, pressures, and water 

levels allow for immediate feedback to control systems. 

This enables operators to dynamically optimize gate 

openings, pump speeds, or valve positions to maximize 

energy efficiency, manage water resources more 

effectively, prevent flooding, or respond rapidly to 

unexpected events [5, 20]. 

• Predictive Maintenance: By accurately simulating 

evolving flow conditions, these solvers can identify 

regions of high stress, cavitation potential, or erosion, 

facilitating predictive maintenance and prolonging the 

lifespan of infrastructure components. 

• Risk Assessment and Emergency Response: In 

scenarios like dam breaks or critical valve failures, rapid, 

physics-consistent simulations can provide invaluable 

information for real-time risk assessment and 

emergency response planning, aiding in decision-

making for public safety. 

• Design and Retrofit Optimization: Engineers can use 

these fast solvers to quickly evaluate various design 

alternatives or retrofit strategies for existing 

infrastructure, significantly accelerating the design cycle 

and identifying optimal solutions that balance 

performance, cost, and safety. 

Remaining Challenges and Future Directions 

Despite their immense potential, the field of hybrid physics-

informed neural solvers is still nascent, and several 

challenges need to be addressed for widespread adoption. 

• Scalability to High-Dimensional Problems: 

Simulating fully 3D, high Reynolds number, turbulent 

multiphase flows over complex geometries remains 

computationally demanding, even for these advanced 

solvers. Scaling these methods to industrial-scale 

problems with millions of degrees of freedom is a 

significant hurdle [2, 13]. 

• Training Stability and Hyperparameter Tuning: 

Training PINNs and hybrid models can be challenging. 

The weighting of different loss terms (PDE, BC, Data) 

and the selection of appropriate hyperparameters (e.g., 

network architecture, activation functions, optimizers, 

learning rates) are critical for successful and stable 

training [2]. More robust and automated training 

methodologies are needed. 

• Complex Constitutive Relations: For multiphase 

flows, accurately modeling inter-phase forces (e.g., drag, 

lift, virtual mass, turbulence dispersion) and phase 

change phenomena (e.g., boiling, condensation) requires 

complex constitutive relations that are difficult to 

embed and learn within neural networks while ensuring 

thermodynamic consistency. 

• Uncertainty Quantification: While some progress has 

been made [14], robust and efficient methods for 

quantifying uncertainty in the predictions of these 

solvers are crucial for engineering applications where 

safety margins are paramount. 

• Generalization Across Diverse Physics: Developing 

"universal" neural operators or solvers that can 

generalize across a wide range of physical phenomena 

(e.g., compressible vs. incompressible, reacting vs. non-

reacting flows) without extensive retraining is an 

ambitious long-term goal. 

• Integration with Existing Workflows: Seamlessly 

integrating these novel solvers into existing engineering 

design and operational workflows, including coupling 

with control systems and data acquisition platforms, 

requires significant development and standardization. 

• Data Availability and Quality for Hybrid Models: 

While data-efficient, hybrid models still benefit from 

strategic, sparse high-fidelity data. Generating such data 

for complex unsteady multiphase flows can still be a 

significant undertaking. The effective use of transfer 

learning [20] and self-supervised learning from 

unlabeled data will be crucial. 

Future research should focus on developing more scalable 

architectures, robust training algorithms, and innovative 

ways to embed complex physics into neural networks. 

Further exploration of transfer learning and uncertainty 

quantification will accelerate their practical deployment. 

The synergistic development of physics-guided deep 

learning and advanced sensing/control technologies will 

unlock unprecedented capabilities for managing complex 

fluid systems. 

CONCLUSION 

The demand for real-time, accurate predictions in the 

complex domain of unsteady multiphase flows, particularly 

within dynamically adapting hydraulic infrastructures, 

underscores a critical gap in conventional simulation 

capabilities. This article has highlighted the transformative 

potential of hybrid physics-informed neural solvers as a 

cutting-edge solution to this challenge. By seamlessly 

integrating fundamental physical laws into deep learning 

architectures and judiciously leveraging sparse data, these 

solvers offer a compelling blend of computational efficiency, 
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physical consistency, and predictive accuracy that far 

surpasses the limitations of traditional CFD methods and 

purely data-driven models. 

The analysis reveals that these advanced solvers are poised 

to deliver enhanced accuracy in turbulence modeling and 

multiphase interface dynamics, enabling real-time 

operational insights and significantly reducing the 

computational burden associated with transient 

simulations. This capability is paramount for the intelligent 

control, dynamic optimization, and predictive maintenance 

of modern hydraulic systems. While challenges related to 

scalability for high-dimensional problems, training stability, 

and the integration of complex constitutive relations persist, 

the rapid advancements in deep learning, coupled with 

dedicated research in physics-informed AI, are continuously 

pushing the boundaries of what is possible. 

In essence, hybrid physics-informed neural solvers 

represent a paradigm shift in computational fluid dynamics. 

Their continued development and robust implementation 

will be instrumental in unlocking unprecedented levels of 

efficiency, resilience, and adaptability in critical hydraulic 

infrastructures, thereby contributing significantly to global 

efforts in sustainable water management, energy 

optimization, and climate resilience. 
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