
FEMS, (2025)

https://irjernet.com/index.php/fems 6

Volume 02, Issue 08, August 2025,

Publish Date: 12-08-2025

PageNo.06-11

Optimizing Distributed Transaction Strategies for Microservice-Based Banking APIs: A Comparative

Theoretical and Practical Analysis of Saga and Two-Phase Commit Patterns

Rajiv K. Deshmukh

Global Institute of Distributed Systems, United Kingdom

ABSTRACT

Background: Modern banking platforms increasingly adopt microservice architectures and RESTful APIs to achieve

scalability, agility, and independent deployability, yet they confront fundamental challenges in preserving transactional

integrity across polyglot services and distributed data stores. Two prominent approaches—coordinated, blocking protocols

typified by Two-Phase Commit (2PC), and decentralized, compensation-based workflows typified by the Saga pattern—offer

divergent trade-offs in consistency, availability, latency, and operational complexity. This paper synthesizes the theoretical

foundations and practical implications of these strategies specifically for banking API ecosystems, integrating perspectives

from transaction theory, distributed systems design, and contemporary microservice engineering.

Methods: Relying exclusively on the provided literature, this research conducts a rigorous conceptual synthesis and

comparative analysis. We reconstruct the problem space by aligning classical transaction theory with microservice

characteristics, elucidate the mechanics and failure modes of 2PC and Saga workflows, and propose a decision framework

and hybrid design patterns for banking scenarios. Our methodological approach foregrounds architectural constraints found

in RESTful API design, event-driven orchestration, and multi-database deployment common in banking domains.

Results: The analysis reveals that while 2PC provides strong atomicity guarantees suitable for tightly coupled systems and

guaranteed commit semantics, it imposes coordination latency, resource locking, and limited fault-tolerance at scale

(Haerder & Reuter, 1983; Fan et al., 2020). Conversely, Saga affords greater availability and resilience in loosely coupled

microservices and supports eventual business consistency through compensating transactions, yet it demands rigorous

compensation design, complex recovery logic, and can produce transient anomalies that must be addressed at the domain

level (Christudas & Christudas, 2019; Kleppmann, 2017). Hybrid approaches—combining local 2PC within bounded

contexts, Saga orchestration across services, and compensation-aware idempotency controls—emerge as pragmatic for

banking APIs that require both strict monetary correctness and scalable operations (Hebbar, 2025; Zhang et al., 2019).

Discussion: We provide an extended theoretical elaboration on failure semantics, concurrency control, idempotence, and

observability necessary for operationalizing either pattern, explore counter-arguments regarding correctness vs.

performance trade-offs, and discuss limitations of each approach. We synthesize a prescriptive, textual methodology for

architects: classifying transactions by criticality, mapping failure and latency budgets, and selecting patterns or hybrids

accordingly. Proposed future research directions include formal verification of compensation logic, adaptive middleware for

mixed-mode transactions, and empirical validation in production banking environments.

Conclusion: No single pattern universally dominates; the optimal choice for banking APIs depends on explicit domain

requirements, tolerance for eventual consistency, and operational maturity. Banks benefit from adopting an evidence-based

hybrid strategy: local strong coordination where monetary correctness cannot be compromised, distributed Saga

orchestration for cross-cutting business flows, and enhanced tooling for monitoring and recovery. This synthesis offers

architects an in-depth conceptual toolkit and stepwise design guidelines informed by foundational and contemporary

research.

KEYWORDS: Distributed transactions, microservices, Saga pattern, two-phase commit, banking APIs, compensation,

transactional consistency.

INTRODUCTION

The emergence of microservice architectures has

precipitated a fundamental re-evaluation of how

transactional integrity is achieved in distributed systems.

Historically, transactional semantics in monolithic systems

Frontiers in Emerging Multidisciplinary Sciences (Open Access)

FEMS, (2025)

https://irjernet.com/index.php/fems 7

rested on centralized database management systems

capable of providing ACID (Atomicity, Consistency, Isolation,

Durability) guarantees (Haerder & Reuter, 1983). Banking

systems—by virtue of handling monetary transfers,

balances, and regulatory compliance—demand correctness

and robust recovery semantics. As enterprises have

deconstructed monoliths into independently deployable

services, each owning its own data store, the classical

centralized model fractures: a single global transaction that

spans multiple services and databases becomes impractical

and, in many cases, impossible without introducing

operational brittleness and performance penalties

(Newman, 2021; Kleppmann, 2017).

This fragmentation raises a core design question for banking

API architects: how should distributed transactions be

implemented so that they harmonize the business

requirement for monetary correctness with the architectural

goals of scalability and resilience intrinsic to microservices

and RESTful services (Fielding, 2000; Lewis & Fowler,

2014)? The literature offers two broad families of

approaches. First, coordinated commit protocols—

exemplified by Two-Phase Commit (2PC) and its variants—

attempt to preserve ACID-like semantics through a

centralized coordinator that orchestrates the commit or

abort of participants (Haerder & Reuter, 1983; Fan et al.,

2020). Second, compensation-based designs—exemplified

by the Saga pattern—eschew global locks and instead

decompose a global transaction into sequences of local

transactions interleaved with compensating transactions to

restore invariants when needed (Christudas & Christudas,

2019; Newman, 2021).

While general principles are well-studied, the banking

domain presents unique constraints: regulatory visibility

requirements, strict correctness for monetary transfers,

real-time responses for customer-facing APIs, and

interactions with legacy backend systems and external

clearing networks. These constraints create a rich design

space in which the trade-offs between 2PC and Saga become

nuanced and context-dependent (Hebbar, 2025; Navarro,

2022). This paper aims to produce an exhaustive,

publication-quality synthesis of these patterns, including

their theoretical underpinnings, operational behaviors,

failure modes, and practical prescriptions tailored for

banking APIs. The work fills a literature gap by integrating

transaction theory, recent microservice research, and

domain-specific banking constraints into a unified decision

framework, accompanied by detailed methodological

guidance for architects.

METHODOLOGY
This research adopts a conceptual-analytic methodology

rooted in an exhaustive reading and critical synthesis of the

provided references. The objective is to derive logically

consistent conclusions and prescriptive design guidance

without introducing empirical data beyond what the cited

works supply. The methodology unfolds in the following

stages: (1) conceptual alignment—mapping classical

transaction theory to microservice realities; (2) pattern

deconstruction—detailing the mechanisms, guarantees, and

failure semantics of 2PC and Saga; (3) scenario-driven

analysis—applying the deconstructed patterns to canonical

banking API workflows to elucidate trade-offs; (4)

hybridization and decision framework—proposing

combinational strategies and selection criteria; and (5)

robustness considerations—discussing idempotency,

concurrency control, monitoring, and compensation design.

Conceptual alignment synthesizes insights from classical

database recovery and transaction principles (Haerder &

Reuter, 1983), modern data-intensive system thinking

(Kleppmann, 2017), and RESTful architectural constraints

(Fielding, 2000). Pattern deconstruction builds on domain-

specific microservices research, which analyzes distributed

transaction strategies and introduces new protocol variants

and frameworks (Bashtovyi & Fechan, 2024; Fan et al., 2020;

Zhang et al., 2019). Scenario-driven analysis draws on

applied research in banking and enterprise transaction

platforms to model transfer operations, balance updates,

and reserve accounting across microservices (Hebbar, 2025;

Navarro, 2022; González-Aparicio et al., 2023). The decision

framework combines theoretical metrics (consistency

models, latency, availability) with practical operational

constraints (observability, rollback windows,

compensatability) to produce prescriptive guidance (Godage

et al., 2023; Nylund, 2023).

Throughout the analysis, every major claim is explicitly

supported by the literature. Where the literature presents

competing viewpoints, both are discussed and evaluated.

Importantly, the methodology intentionally avoids empirical

simulation and instead focuses on theoretical articulation

and design rationale—a choice appropriate given the

instruction to base content strictly on the provided

references.

RESULTS
This section presents a descriptive analysis of the principal

findings of the conceptual synthesis: a deep articulation of

the behaviors, trade-offs, and pragmatic considerations

associated with 2PC and Saga when applied to banking APIs.

The results are organized into several thematic subsections:

transactional guarantees and semantics; latency and

scalability; failure modes and recovery; operational

complexity and maintainability; and hybrid strategies.

Transactional Guarantees and Semantics

 Two-Phase Commit (2PC) seeks to provide atomic commit

semantics across multiple participants by employing a

coordinator which first asks participants to prepare and

then to commit or abort. When all participants respond

positively in the prepare phase, the coordinator issues a

commit; otherwise, it instructs abort. The principal

advantage is preservation of atomicity: either all

FEMS, (2025)

https://irjernet.com/index.php/fems 8

participants commit or none do, thus maintaining strong

consistency across multiple datastores (Haerder & Reuter,

1983; Fan et al., 2020). In banking contexts, this can

theoretically guarantee the preservation of critical monetary

invariants—no net creation or loss of funds across

services—provided proper isolation and serializability are

enforced locally.

The Saga pattern, by contrast, models a long-running

transaction as a sequence of local transactions where each

local transaction publishes an event or effect. If a subsequent

step fails, the system executes compensating transactions to

revert the effects of preceding steps, thereby attempting to

restore a consistent state at the business level (Christudas &

Christudas, 2019; Newman, 2021). Sagas shift the burden

from centralized coordination to distributed orchestration

or choreography, favoring availability and resilience but

delivering eventual consistency rather than strict atomicity.

Applying these semantics to banking APIs yields clear

distinctions. For atomic monetary transfers involving ledger

updates across multiple bounded contexts (e.g., account

service, fraud service, ledger service), 2PC appears to map

directly to the atomicity requirement—if a coordinated

commit can be achieved, the system ensures invariant

preservation. However, 2PC’s reliance on blocking locks and

global coordination creates availability and latency issues,

particularly under partial failures or network partitions

(Haerder & Reuter, 1983; Fan et al., 2020). Saga approaches

can achieve high availability and responsiveness but require

careful compensation logic and domain-level reconciliation

to ensure that the eventual state is correct and that transient

inconsistencies are tolerable given business rules

(Christudas & Christudas, 2019; Kleppmann, 2017).

Latency and Scalability

 Coordination in 2PC introduces round-trip communication

and often requires participants to hold resources in a

prepared state until the commit/abort decision is made,

resulting in increased latency and reduced throughput as the

number of participants grows (Fan et al., 2020). For banking

APIs that must respond to customer requests within strict

latency budgets, this can degrade user experience and

jeopardize SLAs (Navarro, 2022). Furthermore, under high

concurrency, the global locking behavior of 2PC can create

contention and cascading delays.

Saga achieves better scalability by avoiding global locks:

local transactions commit independently, and

compensations are invoked if necessary. This non-blocking

behavior means that services remain responsive and can

scale horizontally. However, Sagas may introduce extended

periods of eventual consistency during which business views

diverge, necessitating compensating activities or

reconciliation jobs. API-level design must therefore expose

appropriate semantics to clients—e.g., indicating "pending"

states for transfers—so consumers understand that finality

may be delayed (Christudas & Christudas, 2019; Newman,

2021).

Failure Modes and Recovery Semantics

 2PC exhibits well-characterized failure modes: coordinator

failure during commit/abort decision points can leave

participants in uncertain (prepared) states, necessitating

manual or automated recovery mechanisms that rely on

persistent logs and timeouts (Haerder & Reuter, 1983). In

banking systems, unresolved prepared states can lock

accounts, freeze funds, and trigger customer-facing outages

if not resolved. Moreover, network partitions exacerbate

these problems since participants cannot reach the

coordinator, and the blocking nature of 2PC may prolong

outages.

Saga’s failure modes commonly relate to compensating

transaction design failures, partial application of side effects

(e.g., notification sent before compensation), and difficulty in

guaranteeing global invariants during error windows.

Compensation logic may be non-trivial, especially for

operations that are not naturally reversible (e.g., sending

notifications, interacting with external settlement

networks). Moreover, race conditions can produce

anomalies where compensations are applied concurrently

with subsequent operations. Robust Saga implementations

thus require idempotent operations, careful ordering, and

compensating semantics designed from the outset

(Christudas & Christudas, 2019; Kleppmann, 2017; Zhang et

al., 2019).

Operational Complexity and Maintainability

 2PC centralizes complexity within the coordinator and

participant protocol implementations, which can simplify

reasonability but increases operational burden for database

and infrastructure engineers. The need to manage

coordinator failover, persistent logs, and participant

timeouts introduces additional operational complexity (Fan

et al., 2020).

Saga shifts complexity to the application domain: business

logic must include compensating transactions, and

orchestration or choreography engines must handle

sequencing, retries, and partial failures. From a

maintainability standpoint, code becomes entangled with

compensation semantics, demanding rigorous testing,

simulation, and documentation. However, the microservice

model—where teams own services and their data—aligns

well with Saga’s decomposition, allowing team-level

autonomy and localized reasoning about failure handling

(Lewis & Fowler, 2014; Newman, 2021).

Hybrid Strategies and Pattern Selection

 The literature and domain analysis suggest that hybrid

strategies can combine the strengths of both approaches. For

example, within a bounded context where multiple

operations touch a tightly coupled subset of data, localized

2PC or even database-level transactions may be acceptable

and less risky since participant count is small and latency

FEMS, (2025)

https://irjernet.com/index.php/fems 9

implications contained. Across bounded contexts, Saga

orchestration can manage long-running, cross-service

workflows. Further hybridization includes using

compensation for business-level rollback while employing

lightweight consensus protocols for critical primitive state

(Zhang et al., 2019; Hebbar, 2025). The design of such

hybrids should be guided by transaction criticality

classification, latency budgets, and recovery windows.

DISCUSSION
This section elaborates interpretively on the implications of

the results, discusses limitations, and articulates detailed

practical recommendations and future research directions.

The discussion traverses theoretical foundations,

counterarguments, and prescriptive design fluency for

architects of banking APIs.

Theoretical Interpretations and Trade-offs

 At a theoretical level, the trade-off between 2PC and Saga is

an instantiation of the broader CAP and FLP-like tensions in

distributed computing: coordination enables stronger

consistency but at the cost of availability and performance;

decentralization trades immediate consistency for

availability and partition tolerance (Kleppmann, 2017). In

banking, where correctness is non-negotiable, the

temptation is to favor coordination protocols. However,

practical systems cannot ignore performance and resilience;

customer expectations and regulatory requirements

demand both correctness and high availability. Thus, an

exclusive reliance on 2PC in a microservice architecture may

be impractical.

An important nuance arises in distinguishing correctness at

the technical level (e.g., atomic commit) from correctness at

the business level (e.g., maintaining ledger invariants and

regulatory compliance). Saga, when implemented with well-

designed compensations, can preserve business correctness

even without providing strict atomicity at the storage level.

Compensations can be designed to ensure that, after

recovery, the system satisfies its business invariants, albeit

with transient states. This reframing suggests that

transactional semantics should be recast in terms of

business invariants amenable to compensation-based

recovery, not solely database-level atomicity (Christudas &

Christudas, 2019; Kleppmann, 2017).

Counter-Arguments and Rebuttals

 A common counter-argument is that Saga's eventual

consistency is fundamentally inadequate for banking due to

the potential for transient double-spend or inconsistent

balance presentation. Proponents of this view argue that

only strong atomicity prevents such anomalies. In response,

several points mitigate this concern. First, many banking

operations can be decomposed into critically atomic

primitives and less-critical follow-on steps; atomicity can be

enforced for the primitives (via localized strong

transactions), while longer workflows are managed as Sagas.

Second, engineering practices—such as provisional holds,

reservation semantics, and compensations—can prevent

double-spend exposure to end-users. For example, a

provisional hold on funds (a local atomic operation) can be

used to guarantee a reserve while subsequent operations

complete asynchronously—this design pattern leverages a

hybrid of atomic primitives and Saga orchestration to

balance correctness and responsiveness (Hebbar, 2025;

Newman, 2021).

Another rebuttal posits that 2PC, when augmented with new

consensus protocols or non-blocking commit variants (e.g.,

2PC*), can be made performant and non-blocking. Research

into protocol variants and optimized concurrency control

demonstrates promising directions (Fan et al., 2020). Yet,

such protocols often entail significant complexity and

require specialized infrastructure support, limiting their

practical adoption across polyglot microservice ecosystems.

Thus, while advanced 2PC variants may reduce some

drawbacks, they do not universally eliminate the

fundamental cost of centralized coordination.

Design Prescriptions and Best Practices for Banking APIs

 Drawing on the theoretical synthesis and scenario analysis,

a set of concrete design prescriptions is offered for banking

architects:

1. Classify transaction criticality: Establish clear labels

for operations: (a) critical atomic primitives (e.g., ledger

updates that must be atomic at the account level), (b)

medium-critical workflows (e.g., cross-service

reconciliation, external settlements), and (c) non-critical

processes (e.g., notifications, analytics ingestion). Use strong

coordination only for (a); employ Saga orchestration and

idempotent compensations for (b) and (c) (Hebbar, 2025;

Navarro, 2022).

2. Use local strong transactions inside bounded

contexts: Preserve atomicity at the service/database

boundary using local DB transactions or lightweight

coordinator protocols where the participant set is small and

co-located. This reduces complexity while guaranteeing

primitives (Christudas & Christudas, 2019; Newman, 2021).

3. Design compensations as first-class artifacts:

Compensation logic must be specified, tested, and versioned

alongside forward business logic. Consider that not all

operations are easily reversible—design for safe

compensations by introducing reversible primitives (e.g.,

holds and releases) wherever possible (Christudas &

Christudas, 2019; Kleppmann, 2017).

4. Adopt orchestration engines for complex

workflows: Explicit orchestrators (e.g., state machines or

workflow engines) centralize Saga control and simplify

recovery logic compared to ad-hoc choreography.

Orchestrators provide clearer failure semantics, centralized

observability, and easier reasoning about long-running

flows (Bashtovyi & Fechan, 2024; Toffetti et al., 2015).

5. Invest in idempotency and retry semantics:

Endpoints should be idempotent and designed for safe

FEMS, (2025)

https://irjernet.com/index.php/fems 10

retries; compensating transactions should also be

idempotent. Explicit idempotency keys and deduplication

logic prevent double application under retries and network

duplication (Godage et al., 2023; Newman, 2021).

6. Surface eventuality semantics in APIs: Banking APIs

should explicitly communicate the finality semantics of

operations (e.g., "tentative" vs. "final") so clients can adapt

UI/UX and downstream reconciliation. This reduces

confusion and supports better user experience during

eventual consistency windows (Christudas & Christudas,

2019).

7. Implement robust observability and reconciliation:

End-to-end tracing, audit logs, and reconciliation jobs are

necessary to detect and remediate anomalies induced by

distributed failure. Recovery tooling should integrate with

operational runbooks to handle prepared states in 2PC or

unresolved compensations in Sagas (González-Aparicio et

al., 2023; Godage et al., 2023).

8. Use hybrid transactional middleware where

appropriate: Emerging platforms that support polyglot

transactions and reconciliation (e.g., GRIT-like systems)

provide new options for combining local transactional

guarantees with cross-service coordination. Evaluate these

platforms carefully for integration cost and operational

maturity (Zhang et al., 2019; González-Aparicio et al., 2023).

Limitations and Future Work

This research is constrained by its theoretical nature and

exclusive reliance on the provided references; empirical

validation in active banking environments would strengthen

and quantify the trade-offs described. Future research

should pursue formal verification of compensation logic and

recovery protocols, develop middleware that dynamically

chooses coordination strategies based on runtime

conditions, and carry out controlled experiments comparing

throughput, latency, and correctness incidents under both

patterns across realistic bank-like workloads. Additionally,

development of domain-specific languages for

compensation specification and model checking would

materially reduce the risk inherent in Saga design.

CONCLUSION
This paper has provided an exhaustive theoretical analysis

and prescriptive synthesis of distributed transaction

strategies—Two-Phase Commit and Saga—applied to

microservice-based banking APIs. Both patterns present

compelling advantages and salient drawbacks: 2PC’s strong

atomicity versus Saga’s scalability and resilience. Banking

architectures should not adopt either pattern wholesale but

instead apply a nuanced hybrid approach: enforcing atomic

primitives locally, orchestrating cross-service workflows via

Saga or orchestrators, and employing carefully designed

compensations and observability practices to ensure

business correctness.

The decision framework and practical prescriptions distilled

herein aim to empower architects to make design choices

that reflect the nuanced risk, performance, and operational

constraints endemic to banking. Furthermore, the field

would benefit from tooling and formal methods that reduce

the difficulty of specifying and verifying compensating

transactions, alongside empirical studies that quantify

operational trade-offs in live banking systems. As banks

evolve toward increasingly decentralized architectures, such

research and tooling will be critical to preserving monetary

correctness while delivering scalable, resilient services to

customers.

REFERENCES
1. Bashtovyi, A., & Fechan, A. (2024). DISTRIBUTED

TRANSACTIONS IN MICROSERVICE ARCHITECTURE:

INFORMED DECISION-MAKING STRATEGIES.

2. Toffetti, G., Brunner, S., Blöchlinger, M., Dudouet, F., &

Edmonds, A. (2015, April). An architecture for self-

managing microservices. In Proceedings of the 1st

international workshop on automated incident

management in cloud (pp. 19-24).

3. Yadav, P. S. DESIGN AND EVALUATION OF EVENT-

DRIVEN ARCHITECTURES FOR TRANSACTION

MANAGEMENT IN MICROSERVICES.

4. Navarro, A. (2022). Fundamentals of Transaction

Management in Enterprise Application Architectures.

IEEE Access, 10, 124305-124332.

5. Nylund, W. (2023). Comparing Transaction

Management Methods in Microservice Architecture.

6. Zhang, G., Ren, K., Ahn, J. S., & BenRomdhane, S. (2019,

April). GRIT: consistent distributed transactions across

polyglot microservices with multiple databases. In 2019

IEEE 35th International Conference on Data Engineering

(ICDE) (pp. 2024-2027). IEEE.

7. González-Aparicio, M. T., Younas, M., Tuya, J., & Casado,

R. (2023). A transaction platform for microservices-

based big data systems. Simulation Modelling Practice

and Theory, 123, 102709.

8. Godage, S., Kumar, T. R., Pandya, H., Bhosale, S., & Patil,

R. (2023). Web Interface for Distributed Transaction

System. Computer Integrated Manufacturing Systems,

29(6), 214-227.

9. Kishore Subramanya Hebbar. (2025). Optimizing

Distributed Transactions in Banking APIs: Saga Pattern

vs. Two -Phase commit (2PC). The American Journal of

Engineering and Technology, 7(06), 157–169.

https://doi.org/10.37547/tajet/Volume07Issue06-18

10. Christudas, B., & Christudas, B. (2019). Distributed

Transactions. Practical Microservices Architectural

Patterns: EventBased Java Microservices with Spring

Boot and Spring Cloud, 385-481.

11. Fan, P., Liu, J., Yin, W., Wang, H., Chen, X., & Sun, H.

(2020). 2PC*: a distributed transaction concurrency

control protocol of multimicroservice based on cloud

computing platform. Journal of Cloud Computing, 9, 1-

22.

FEMS, (2025)

https://irjernet.com/index.php/fems 11

12. Newman, S. (2021). Building microservices. O'Reilly

Media, Inc.

13. Christudas, B., & Christudas, B. (2019). Transactions and

Microservices. Practical Microservices Architectural

Patterns: EventBased Java Microservices with Spring

Boot and Spring Cloud, 483-541.

14. Fielding, R.T. (2000) Rest: Architectural Styles and the

Design of Network-Based Software Architectures.

Doctoral Dissertation, University of California.

15. Taibi, D., Lenarduzzi, V., Pahl, C. and Janes, A. (2017)

Microservices in Agile Software Development.

Proceedings of the XP2017 Scientific Workshops,

Cologne, 22-26 May 2017, 1-5.

16. Kleppmann, M. (2017) Designing Data-Intensive

Applications: The Big Ideas behind Reliable, Scalable,

and Maintainable Systems. O’Reilly Media, Inc.

17. Haerder, T. and Reuter, A. (1983) Principles of

Transaction-Oriented Database Recovery. ACM

Computing Surveys, 15, 287-317.

18. Carrera-Rivera, A., Ochoa, W., Larrinaga, F. and Lasa, G.

(2022) How-to Conduct a Systematic Literature Review:

A Quick Guide for Computer Science Research.

MethodsX, 9, Article 101895.

19. Lewis, J. and Fowler, M. (2014) Microservices, a

Definition of This New Architectural Term.

20. Pahl, C. and Jamshidi, P. (2016) Microservices: A

Systematic Mapping Study. Proceedings of the 6th

International Conference on Cloud Computing and

Services Science, Rome, 23-25 April 2016, 137-146.

