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ABSTRACT

Background: Modern banking platforms increasingly adopt microservice architectures and RESTful APIs to achieve
scalability, agility, and independent deployability, yet they confront fundamental challenges in preserving transactional
integrity across polyglot services and distributed data stores. Two prominent approaches—coordinated, blocking protocols
typified by Two-Phase Commit (2PC), and decentralized, compensation-based workflows typified by the Saga pattern—offer
divergent trade-offs in consistency, availability, latency, and operational complexity. This paper synthesizes the theoretical
foundations and practical implications of these strategies specifically for banking API ecosystems, integrating perspectives
from transaction theory, distributed systems design, and contemporary microservice engineering.

Methods: Relying exclusively on the provided literature, this research conducts a rigorous conceptual synthesis and
comparative analysis. We reconstruct the problem space by aligning classical transaction theory with microservice
characteristics, elucidate the mechanics and failure modes of 2PC and Saga workflows, and propose a decision framework
and hybrid design patterns for banking scenarios. Our methodological approach foregrounds architectural constraints found
in RESTful API design, event-driven orchestration, and multi-database deployment common in banking domains.

Results: The analysis reveals that while 2PC provides strong atomicity guarantees suitable for tightly coupled systems and
guaranteed commit semantics, it imposes coordination latency, resource locking, and limited fault-tolerance at scale
(Haerder & Reuter, 1983; Fan et al,, 2020). Conversely, Saga affords greater availability and resilience in loosely coupled
microservices and supports eventual business consistency through compensating transactions, yet it demands rigorous
compensation design, complex recovery logic, and can produce transient anomalies that must be addressed at the domain
level (Christudas & Christudas, 2019; Kleppmann, 2017). Hybrid approaches—combining local 2PC within bounded
contexts, Saga orchestration across services, and compensation-aware idempotency controls—emerge as pragmatic for
banking APIs that require both strict monetary correctness and scalable operations (Hebbar, 2025; Zhang et al., 2019).
Discussion: We provide an extended theoretical elaboration on failure semantics, concurrency control, idempotence, and
observability necessary for operationalizing either pattern, explore counter-arguments regarding correctness vs.
performance trade-offs, and discuss limitations of each approach. We synthesize a prescriptive, textual methodology for
architects: classifying transactions by criticality, mapping failure and latency budgets, and selecting patterns or hybrids
accordingly. Proposed future research directions include formal verification of compensation logic, adaptive middleware for
mixed-mode transactions, and empirical validation in production banking environments.

Conclusion: No single pattern universally dominates; the optimal choice for banking APIs depends on explicit domain
requirements, tolerance for eventual consistency, and operational maturity. Banks benefit from adopting an evidence-based
hybrid strategy: local strong coordination where monetary correctness cannot be compromised, distributed Saga
orchestration for cross-cutting business flows, and enhanced tooling for monitoring and recovery. This synthesis offers
architects an in-depth conceptual toolkit and stepwise design guidelines informed by foundational and contemporary
research.

KEYWORDS: Distributed transactions, microservices, Saga pattern, two-phase commit, banking APIs, compensation,
transactional consistency.

INTRODUCTION

The emergence of microservice architectures has transactional integrity is achieved in distributed systems.
precipitated a fundamental re-evaluation of how Historically, transactional semantics in monolithic systems
_______________________________________________________________________________________________________________________________|
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rested on centralized database management systems
capable of providing ACID (Atomicity, Consistency, Isolation,
Durability) guarantees (Haerder & Reuter, 1983). Banking
systems—by virtue of handling monetary transfers,
balances, and regulatory compliance—demand correctness
and robust recovery semantics. As enterprises have
deconstructed monoliths into independently deployable
services, each owning its own data store, the classical
centralized model fractures: a single global transaction that
spans multiple services and databases becomes impractical
and, in many cases, impossible without introducing
operational brittleness and performance penalties
(Newman, 2021; Kleppmann, 2017).

This fragmentation raises a core design question for banking
API architects: how should distributed transactions be
implemented so that they harmonize the business
requirement for monetary correctness with the architectural
goals of scalability and resilience intrinsic to microservices
and RESTful services (Fielding, 2000; Lewis & Fowler,
2014)? The literature offers two broad families of
approaches. First, protocols—
exemplified by Two-Phase Commit (2PC) and its variants—
attempt to preserve ACID-like semantics through a
centralized coordinator that orchestrates the commit or
abort of participants (Haerder & Reuter, 1983; Fan et al,
2020). Second, compensation-based designs—exemplified
by the Saga pattern—eschew global locks and instead
decompose a global transaction into sequences of local
transactions interleaved with compensating transactions to
restore invariants when needed (Christudas & Christudas,
2019; Newman, 2021).

While general principles are well-studied, the banking
domain presents unique constraints: regulatory visibility
requirements, strict correctness for monetary transfers,
real-time

coordinated commit

responses for customer-facing APIs, and
interactions with legacy backend systems and external
clearing networks. These constraints create a rich design
space in which the trade-offs between 2PC and Saga become
nuanced and context-dependent (Hebbar, 2025; Navarro,
2022). This paper aims to produce an exhaustive,
publication-quality synthesis of these patterns, including
their theoretical underpinnings, operational behaviors,
failure modes, and practical prescriptions tailored for
banking APIs. The work fills a literature gap by integrating
transaction theory, recent microservice research, and
domain-specific banking constraints into a unified decision
framework, accompanied by detailed methodological
guidance for architects.

METHODOLOGY

This research adopts a conceptual-analytic methodology
rooted in an exhaustive reading and critical synthesis of the
provided references. The objective is to derive logically
consistent conclusions and prescriptive design guidance

without introducing empirical data beyond what the cited

works supply. The methodology unfolds in the following
stages: (1) conceptual alignment—mapping classical
transaction theory to microservice realities; (2) pattern
deconstruction—detailing the mechanisms, guarantees, and
failure semantics of 2PC and Saga; (3) scenario-driven
analysis—applying the deconstructed patterns to canonical
banking APl workflows to elucidate trade-offs; (4)
hybridization framework—proposing
combinational strategies and selection criteria; and (5)
robustness  considerations—discussing  idempotency,
concurrency control, monitoring, and compensation design.
Conceptual alignment synthesizes insights from classical
database recovery and transaction principles (Haerder &
Reuter, 1983), modern data-intensive system thinking
(Kleppmann, 2017), and RESTful architectural constraints
(Fielding, 2000). Pattern deconstruction builds on domain-
specific microservices research, which analyzes distributed
transaction strategies and introduces new protocol variants
and frameworks (Bashtovyi & Fechan, 2024; Fan et al., 2020;
Zhang et al, 2019). Scenario-driven analysis draws on
applied research in banking and enterprise transaction
platforms to model transfer operations, balance updates,
and reserve accounting across microservices (Hebbar, 2025;
Navarro, 2022; Gonzalez-Aparicio et al., 2023). The decision
framework combines theoretical metrics (consistency
models, latency, availability) with practical operational
constraints (observability, rollback windows,
compensatability) to produce prescriptive guidance (Godage
etal,, 2023; Nylund, 2023).

Throughout the analysis, every major claim is explicitly
supported by the literature. Where the literature presents
competing viewpoints, both are discussed and evaluated.
Importantly, the methodology intentionally avoids empirical
simulation and instead focuses on theoretical articulation

and decision

and design rationale—a choice appropriate given the
instruction to base content strictly on the provided
references.

RESULTS

This section presents a descriptive analysis of the principal
findings of the conceptual synthesis: a deep articulation of
the behaviors, trade-offs, and pragmatic considerations
associated with 2PC and Saga when applied to banking APIs.
The results are organized into several thematic subsections:
transactional
scalability; recovery;
complexity and maintainability; and hybrid strategies.
Transactional Guarantees and Semantics

guarantees and semantics; latency and

failure modes and operational

Two-Phase Commit (2PC) seeks to provide atomic commit
semantics across multiple participants by employing a
coordinator which first asks participants to prepare and
then to commit or abort. When all participants respond
positively in the prepare phase, the coordinator issues a
commit; otherwise, it instructs abort. The principal

advantage is preservation of atomicity: either all
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participants commit or none do, thus maintaining strong
consistency across multiple datastores (Haerder & Reuter,
1983; Fan et al, 2020). In banking contexts, this can
theoretically guarantee the preservation of critical monetary
invariants—no net creation or loss of funds across
services—provided proper isolation and serializability are
enforced locally.

The Saga pattern, by contrast, models a long-running
transaction as a sequence of local transactions where each
local transaction publishes an event or effect. If a subsequent
step fails, the system executes compensating transactions to
revert the effects of preceding steps, thereby attempting to
restore a consistent state at the business level (Christudas &
Christudas, 2019; Newman, 2021). Sagas shift the burden
from centralized coordination to distributed orchestration
or choreography, favoring availability and resilience but
delivering eventual consistency rather than strict atomicity.
Applying these semantics to banking APIs yields clear
distinctions. For atomic monetary transfers involving ledger
updates across multiple bounded contexts (e.g., account
service, fraud service, ledger service), 2PC appears to map
directly to the atomicity requirement—if a coordinated
commit can be achieved, the system ensures invariant
preservation. However, 2PC’s reliance on blocking locks and
global coordination creates availability and latency issues,
particularly under partial failures or network partitions
(Haerder & Reuter, 1983; Fan et al., 2020). Saga approaches
can achieve high availability and responsiveness but require
careful compensation logic and domain-level reconciliation
to ensure that the eventual state is correct and that transient
inconsistencies are tolerable given business
(Christudas & Christudas, 2019; Kleppmann, 2017).
Latency and Scalability

Coordination in 2PC introduces round-trip communication
and often requires participants to hold resources in a

rules

prepared state until the commit/abort decision is made,
resulting in increased latency and reduced throughput as the
number of participants grows (Fan et al., 2020). For banking
APIs that must respond to customer requests within strict
latency budgets, this can degrade user experience and
jeopardize SLAs (Navarro, 2022). Furthermore, under high
concurrency, the global locking behavior of 2PC can create
contention and cascading delays.

Saga achieves better scalability by avoiding global locks:
local  transactions commit  independently, and
compensations are invoked if necessary. This non-blocking
behavior means that services remain responsive and can
scale horizontally. However, Sagas may introduce extended
periods of eventual consistency during which business views
diverge, necessitating compensating activities or
reconciliation jobs. API-level design must therefore expose
appropriate semantics to clients—e.g., indicating "pending"
states for transfers—so consumers understand that finality

may be delayed (Christudas & Christudas, 2019; Newman,
2021).

Failure Modes and Recovery Semantics

2PC exhibits well-characterized failure modes: coordinator
failure during commit/abort decision points can leave
participants in uncertain (prepared) states, necessitating
manual or automated recovery mechanisms that rely on
persistent logs and timeouts (Haerder & Reuter, 1983). In
banking systems, unresolved prepared states can lock
accounts, freeze funds, and trigger customer-facing outages
if not resolved. Moreover, network partitions exacerbate
these problems since participants cannot reach the
coordinator, and the blocking nature of 2PC may prolong
outages.

Saga’s failure modes commonly relate to compensating
transaction design failures, partial application of side effects
(e.g., notification sent before compensation), and difficulty in
guaranteeing global invariants during error windows.
Compensation logic may be non-trivial, especially for
operations that are not naturally reversible (e.g., sending
notifications, interacting with external
networks). Moreover, race conditions can produce
anomalies where compensations are applied concurrently
with subsequent operations. Robust Saga implementations
thus require idempotent operations, careful ordering, and
compensating semantics designed from the outset
(Christudas & Christudas, 2019; Kleppmann, 2017; Zhang et
al,, 2019).

Operational Complexity and Maintainability

2PC centralizes complexity within the coordinator and
participant protocol implementations, which can simplify
reasonability but increases operational burden for database
and infrastructure engineers. The need to manage
coordinator failover, persistent logs, and participant
timeouts introduces additional operational complexity (Fan
etal, 2020).

Saga shifts complexity to the application domain: business
logic compensating transactions,
orchestration or choreography engines must handle

settlement

must include and

sequencing, retries, and partial failures. From a
maintainability standpoint, code becomes entangled with
compensation semantics,
simulation, and documentation. However, the microservice
model—where teams own services and their data—aligns
well with Saga’s decomposition, allowing team-level
autonomy and localized reasoning about failure handling
(Lewis & Fowler, 2014; Newman, 2021).

Hybrid Strategies and Pattern Selection

The literature and domain analysis suggest that hybrid
strategies can combine the strengths of both approaches. For
example, within a bounded context where multiple

operations touch a tightly coupled subset of data, localized

demanding rigorous testing,

2PC or even database-level transactions may be acceptable
and less risky since participant count is small and latency
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implications contained. Across bounded contexts, Saga
orchestration can manage long-running,
Further hybridization includes
compensation for business-level rollback while employing
lightweight consensus protocols for critical primitive state
(Zhang et al, 2019; Hebbar, 2025). The design of such
hybrids should be guided by transaction criticality
classification, latency budgets, and recovery windows.
DISCUSSION

This section elaborates interpretively on the implications of
the results, discusses limitations, and articulates detailed
practical recommendations and future research directions.
The discussion traverses theoretical foundations,
counterarguments, and prescriptive design fluency for
architects of banking APIs.

Theoretical Interpretations and Trade-offs

At a theoretical level, the trade-off between 2PC and Saga is
an instantiation of the broader CAP and FLP-like tensions in
distributed computing: coordination enables stronger
consistency but at the cost of availability and performance;
decentralization trades immediate consistency for
availability and partition tolerance (Kleppmann, 2017). In
banking, non-negotiable, the
temptation is to favor coordination protocols. However,
practical systems cannot ignore performance and resilience;
customer expectations and regulatory requirements
demand both correctness and high availability. Thus, an
exclusive reliance on 2PC in a microservice architecture may
be impractical.

An important nuance arises in distinguishing correctness at
the technical level (e.g., atomic commit) from correctness at

Ccross-service

workflows. using

where correctness is

the business level (e.g, maintaining ledger invariants and
regulatory compliance). Saga, when implemented with well-
designed compensations, can preserve business correctness
even without providing strict atomicity at the storage level.
Compensations can be designed to ensure that, after
recovery, the system satisfies its business invariants, albeit
This that
transactional semantics should be recast in terms of
invariants amenable to compensation-based
recovery, not solely database-level atomicity (Christudas &
Christudas, 2019; Kleppmann, 2017).

Counter-Arguments and Rebuttals

with transient states. reframing suggests

business

A common counter-argument is that Saga's eventual
consistency is fundamentally inadequate for banking due to
the potential for transient double-spend or inconsistent
balance presentation. Proponents of this view argue that
only strong atomicity prevents such anomalies. In response,
several points mitigate this concern. First, many banking
operations can be decomposed into critically atomic
primitives and less-critical follow-on steps; atomicity can be
enforced for the primitives (via localized strong
transactions), while longer workflows are managed as Sagas.
Second, engineering practices—such as provisional holds,

reservation semantics, and compensations—can prevent
double-spend exposure to end-users. For example, a
provisional hold on funds (a local atomic operation) can be
used to guarantee a reserve while subsequent operations
complete asynchronously—this design pattern leverages a
hybrid of atomic primitives and Saga orchestration to
balance correctness and responsiveness (Hebbar, 2025;
Newman, 2021).

Another rebuttal posits that 2PC, when augmented with new
consensus protocols or non-blocking commit variants (e.g.,
2PC*), can be made performant and non-blocking. Research
into protocol variants and optimized concurrency control
demonstrates promising directions (Fan et al., 2020). Yet,
such protocols often entail significant complexity and
require specialized infrastructure support, limiting their
practical adoption across polyglot microservice ecosystems.
Thus, while advanced 2PC variants may reduce some
drawbacks, they do not wuniversally eliminate the
fundamental cost of centralized coordination.

Design Prescriptions and Best Practices for Banking APIs
Drawing on the theoretical synthesis and scenario analysis,
a set of concrete design prescriptions is offered for banking
architects:

1. Classify transaction criticality: Establish clear labels
for operations: (a) critical atomic primitives (e.g., ledger
updates that must be atomic at the account level), (b)
medium-critical workflows (e.g.
reconciliation, external settlements), and (c) non-critical
processes (e.g., notifications, analytics ingestion). Use strong
coordination only for (a); employ Saga orchestration and
idempotent compensations for (b) and (c) (Hebbar, 2025;
Navarro, 2022).

2. Use local strong transactions inside bounded
contexts: Preserve atomicity at the service/database
boundary using local DB transactions or lightweight

cross-service

coordinator protocols where the participant set is small and
co-located. This reduces complexity while guaranteeing
primitives (Christudas & Christudas, 2019; Newman, 2021).
3. Design compensations as first-class artifacts:
Compensation logic must be specified, tested, and versioned
alongside forward business logic. Consider that not all
easily
compensations by introducing reversible primitives (e.g.,
holds and releases) wherever possible (Christudas &
Christudas, 2019; Kleppmann, 2017).

4. Adopt
workflows: Explicit orchestrators (e.g., state machines or

operations are reversible—design for safe

orchestration engines for complex
workflow engines) centralize Saga control and simplify
recovery logic compared to ad-hoc choreography.
Orchestrators provide clearer failure semantics, centralized
observability, and easier reasoning about long-running
flows (Bashtovyi & Fechan, 2024; Toffetti et al., 2015).

5. Invest in idempotency and retry semantics:

Endpoints should be idempotent and designed for safe
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retries; compensating transactions should also be
idempotent. Explicit idempotency keys and deduplication
logic prevent double application under retries and network
duplication (Godage et al.,, 2023; Newman, 2021).

6. Surface eventuality semantics in APIs: Banking APIs
should explicitly communicate the finality semantics of
operations (e.g., "tentative" vs. "final") so clients can adapt
UI/UX and downstream reconciliation. This reduces
confusion and supports better user experience during
eventual consistency windows (Christudas & Christudas,
2019).

7. Implement robust observability and reconciliation:
End-to-end tracing, audit logs, and reconciliation jobs are
necessary to detect and remediate anomalies induced by
distributed failure. Recovery tooling should integrate with
operational runbooks to handle prepared states in 2PC or
unresolved compensations in Sagas (Gonzalez-Aparicio et
al,, 2023; Godage et al., 2023).

8. Use hybrid transactional middleware where
appropriate: Emerging platforms that support polyglot
transactions and reconciliation (e.g., GRIT-like systems)
provide new options for combining local transactional
guarantees with cross-service coordination. Evaluate these
platforms carefully for integration cost and operational
maturity (Zhang et al., 2019; Gonzalez-Aparicio et al., 2023).
Limitations and Future Work

This research is constrained by its theoretical nature and
exclusive reliance on the provided references; empirical
validation in active banking environments would strengthen
and quantify the trade-offs described. Future research
should pursue formal verification of compensation logic and
recovery protocols, develop middleware that dynamically
chooses coordination strategies based on runtime
conditions, and carry out controlled experiments comparing
throughput, latency, and correctness incidents under both
patterns across realistic bank-like workloads. Additionally,
languages
compensation specification and model checking would
materially reduce the risk inherent in Saga design.
CONCLUSION

This paper has provided an exhaustive theoretical analysis
and prescriptive synthesis of distributed transaction
strategies—Two-Phase Commit and Saga—applied to

development of  domain-specific for

microservice-based banking APIs. Both patterns present
compelling advantages and salient drawbacks: 2PC’s strong
atomicity versus Saga’s scalability and resilience. Banking
architectures should not adopt either pattern wholesale but
instead apply a nuanced hybrid approach: enforcing atomic
primitives locally, orchestrating cross-service workflows via
Saga or orchestrators, and employing carefully designed
compensations and observability practices to ensure
business correctness.

The decision framework and practical prescriptions distilled
herein aim to empower architects to make design choices

that reflect the nuanced risk, performance, and operational
constraints endemic to banking. Furthermore, the field
would benefit from tooling and formal methods that reduce
the difficulty of specifying and verifying compensating
transactions, alongside empirical studies that quantify
operational trade-offs in live banking systems. As banks
evolve toward increasingly decentralized architectures, such
research and tooling will be critical to preserving monetary
correctness while delivering scalable, resilient services to
customers.
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