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ABSTRACT 

Background: Modern banking platforms increasingly adopt microservice architectures and RESTful APIs to achieve 

scalability, agility, and independent deployability, yet they confront fundamental challenges in preserving transactional 

integrity across polyglot services and distributed data stores. Two prominent approaches—coordinated, blocking protocols 

typified by Two-Phase Commit (2PC), and decentralized, compensation-based workflows typified by the Saga pattern—offer 

divergent trade-offs in consistency, availability, latency, and operational complexity. This paper synthesizes the theoretical 

foundations and practical implications of these strategies specifically for banking API ecosystems, integrating perspectives 

from transaction theory, distributed systems design, and contemporary microservice engineering. 

Methods: Relying exclusively on the provided literature, this research conducts a rigorous conceptual synthesis and 

comparative analysis. We reconstruct the problem space by aligning classical transaction theory with microservice 

characteristics, elucidate the mechanics and failure modes of 2PC and Saga workflows, and propose a decision framework 

and hybrid design patterns for banking scenarios. Our methodological approach foregrounds architectural constraints found 

in RESTful API design, event-driven orchestration, and multi-database deployment common in banking domains. 

Results: The analysis reveals that while 2PC provides strong atomicity guarantees suitable for tightly coupled systems and 

guaranteed commit semantics, it imposes coordination latency, resource locking, and limited fault-tolerance at scale 

(Haerder & Reuter, 1983; Fan et al., 2020). Conversely, Saga affords greater availability and resilience in loosely coupled 

microservices and supports eventual business consistency through compensating transactions, yet it demands rigorous 

compensation design, complex recovery logic, and can produce transient anomalies that must be addressed at the domain 

level (Christudas & Christudas, 2019; Kleppmann, 2017). Hybrid approaches—combining local 2PC within bounded 

contexts, Saga orchestration across services, and compensation-aware idempotency controls—emerge as pragmatic for 

banking APIs that require both strict monetary correctness and scalable operations (Hebbar, 2025; Zhang et al., 2019). 

Discussion: We provide an extended theoretical elaboration on failure semantics, concurrency control, idempotence, and 

observability necessary for operationalizing either pattern, explore counter-arguments regarding correctness vs. 

performance trade-offs, and discuss limitations of each approach. We synthesize a prescriptive, textual methodology for 

architects: classifying transactions by criticality, mapping failure and latency budgets, and selecting patterns or hybrids 

accordingly. Proposed future research directions include formal verification of compensation logic, adaptive middleware for 

mixed-mode transactions, and empirical validation in production banking environments. 

Conclusion: No single pattern universally dominates; the optimal choice for banking APIs depends on explicit domain 

requirements, tolerance for eventual consistency, and operational maturity. Banks benefit from adopting an evidence-based 

hybrid strategy: local strong coordination where monetary correctness cannot be compromised, distributed Saga 

orchestration for cross-cutting business flows, and enhanced tooling for monitoring and recovery. This synthesis offers 

architects an in-depth conceptual toolkit and stepwise design guidelines informed by foundational and contemporary 

research. 

KEYWORDS: Distributed transactions, microservices, Saga pattern, two-phase commit, banking APIs, compensation, 

transactional consistency. 

INTRODUCTION 

The emergence of microservice architectures has 

precipitated a fundamental re-evaluation of how 

transactional integrity is achieved in distributed systems. 

Historically, transactional semantics in monolithic systems 
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rested on centralized database management systems 

capable of providing ACID (Atomicity, Consistency, Isolation, 

Durability) guarantees (Haerder & Reuter, 1983). Banking 

systems—by virtue of handling monetary transfers, 

balances, and regulatory compliance—demand correctness 

and robust recovery semantics. As enterprises have 

deconstructed monoliths into independently deployable 

services, each owning its own data store, the classical 

centralized model fractures: a single global transaction that 

spans multiple services and databases becomes impractical 

and, in many cases, impossible without introducing 

operational brittleness and performance penalties 

(Newman, 2021; Kleppmann, 2017). 

This fragmentation raises a core design question for banking 

API architects: how should distributed transactions be 

implemented so that they harmonize the business 

requirement for monetary correctness with the architectural 

goals of scalability and resilience intrinsic to microservices 

and RESTful services (Fielding, 2000; Lewis & Fowler, 

2014)? The literature offers two broad families of 

approaches. First, coordinated commit protocols—

exemplified by Two-Phase Commit (2PC) and its variants—

attempt to preserve ACID-like semantics through a 

centralized coordinator that orchestrates the commit or 

abort of participants (Haerder & Reuter, 1983; Fan et al., 

2020). Second, compensation-based designs—exemplified 

by the Saga pattern—eschew global locks and instead 

decompose a global transaction into sequences of local 

transactions interleaved with compensating transactions to 

restore invariants when needed (Christudas & Christudas, 

2019; Newman, 2021). 

While general principles are well-studied, the banking 

domain presents unique constraints: regulatory visibility 

requirements, strict correctness for monetary transfers, 

real-time responses for customer-facing APIs, and 

interactions with legacy backend systems and external 

clearing networks. These constraints create a rich design 

space in which the trade-offs between 2PC and Saga become 

nuanced and context-dependent (Hebbar, 2025; Navarro, 

2022). This paper aims to produce an exhaustive, 

publication-quality synthesis of these patterns, including 

their theoretical underpinnings, operational behaviors, 

failure modes, and practical prescriptions tailored for 

banking APIs. The work fills a literature gap by integrating 

transaction theory, recent microservice research, and 

domain-specific banking constraints into a unified decision 

framework, accompanied by detailed methodological 

guidance for architects. 

METHODOLOGY 
This research adopts a conceptual-analytic methodology 

rooted in an exhaustive reading and critical synthesis of the 

provided references. The objective is to derive logically 

consistent conclusions and prescriptive design guidance 

without introducing empirical data beyond what the cited 

works supply. The methodology unfolds in the following 

stages: (1) conceptual alignment—mapping classical 

transaction theory to microservice realities; (2) pattern 

deconstruction—detailing the mechanisms, guarantees, and 

failure semantics of 2PC and Saga; (3) scenario-driven 

analysis—applying the deconstructed patterns to canonical 

banking API workflows to elucidate trade-offs; (4) 

hybridization and decision framework—proposing 

combinational strategies and selection criteria; and (5) 

robustness considerations—discussing idempotency, 

concurrency control, monitoring, and compensation design. 

Conceptual alignment synthesizes insights from classical 

database recovery and transaction principles (Haerder & 

Reuter, 1983), modern data-intensive system thinking 

(Kleppmann, 2017), and RESTful architectural constraints 

(Fielding, 2000). Pattern deconstruction builds on domain-

specific microservices research, which analyzes distributed 

transaction strategies and introduces new protocol variants 

and frameworks (Bashtovyi & Fechan, 2024; Fan et al., 2020; 

Zhang et al., 2019). Scenario-driven analysis draws on 

applied research in banking and enterprise transaction 

platforms to model transfer operations, balance updates, 

and reserve accounting across microservices (Hebbar, 2025; 

Navarro, 2022; González-Aparicio et al., 2023). The decision 

framework combines theoretical metrics (consistency 

models, latency, availability) with practical operational 

constraints (observability, rollback windows, 

compensatability) to produce prescriptive guidance (Godage 

et al., 2023; Nylund, 2023). 

Throughout the analysis, every major claim is explicitly 

supported by the literature. Where the literature presents 

competing viewpoints, both are discussed and evaluated. 

Importantly, the methodology intentionally avoids empirical 

simulation and instead focuses on theoretical articulation 

and design rationale—a choice appropriate given the 

instruction to base content strictly on the provided 

references. 

RESULTS 
This section presents a descriptive analysis of the principal 

findings of the conceptual synthesis: a deep articulation of 

the behaviors, trade-offs, and pragmatic considerations 

associated with 2PC and Saga when applied to banking APIs. 

The results are organized into several thematic subsections: 

transactional guarantees and semantics; latency and 

scalability; failure modes and recovery; operational 

complexity and maintainability; and hybrid strategies. 

Transactional Guarantees and Semantics 

 Two-Phase Commit (2PC) seeks to provide atomic commit 

semantics across multiple participants by employing a 

coordinator which first asks participants to prepare and 

then to commit or abort. When all participants respond 

positively in the prepare phase, the coordinator issues a 

commit; otherwise, it instructs abort. The principal 

advantage is preservation of atomicity: either all 
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participants commit or none do, thus maintaining strong 

consistency across multiple datastores (Haerder & Reuter, 

1983; Fan et al., 2020). In banking contexts, this can 

theoretically guarantee the preservation of critical monetary 

invariants—no net creation or loss of funds across 

services—provided proper isolation and serializability are 

enforced locally. 

The Saga pattern, by contrast, models a long-running 

transaction as a sequence of local transactions where each 

local transaction publishes an event or effect. If a subsequent 

step fails, the system executes compensating transactions to 

revert the effects of preceding steps, thereby attempting to 

restore a consistent state at the business level (Christudas & 

Christudas, 2019; Newman, 2021). Sagas shift the burden 

from centralized coordination to distributed orchestration 

or choreography, favoring availability and resilience but 

delivering eventual consistency rather than strict atomicity. 

Applying these semantics to banking APIs yields clear 

distinctions. For atomic monetary transfers involving ledger 

updates across multiple bounded contexts (e.g., account 

service, fraud service, ledger service), 2PC appears to map 

directly to the atomicity requirement—if a coordinated 

commit can be achieved, the system ensures invariant 

preservation. However, 2PC’s reliance on blocking locks and 

global coordination creates availability and latency issues, 

particularly under partial failures or network partitions 

(Haerder & Reuter, 1983; Fan et al., 2020). Saga approaches 

can achieve high availability and responsiveness but require 

careful compensation logic and domain-level reconciliation 

to ensure that the eventual state is correct and that transient 

inconsistencies are tolerable given business rules 

(Christudas & Christudas, 2019; Kleppmann, 2017). 

Latency and Scalability 

 Coordination in 2PC introduces round-trip communication 

and often requires participants to hold resources in a 

prepared state until the commit/abort decision is made, 

resulting in increased latency and reduced throughput as the 

number of participants grows (Fan et al., 2020). For banking 

APIs that must respond to customer requests within strict 

latency budgets, this can degrade user experience and 

jeopardize SLAs (Navarro, 2022). Furthermore, under high 

concurrency, the global locking behavior of 2PC can create 

contention and cascading delays. 

Saga achieves better scalability by avoiding global locks: 

local transactions commit independently, and 

compensations are invoked if necessary. This non-blocking 

behavior means that services remain responsive and can 

scale horizontally. However, Sagas may introduce extended 

periods of eventual consistency during which business views 

diverge, necessitating compensating activities or 

reconciliation jobs. API-level design must therefore expose 

appropriate semantics to clients—e.g., indicating "pending" 

states for transfers—so consumers understand that finality 

may be delayed (Christudas & Christudas, 2019; Newman, 

2021). 

Failure Modes and Recovery Semantics 

 2PC exhibits well-characterized failure modes: coordinator 

failure during commit/abort decision points can leave 

participants in uncertain (prepared) states, necessitating 

manual or automated recovery mechanisms that rely on 

persistent logs and timeouts (Haerder & Reuter, 1983). In 

banking systems, unresolved prepared states can lock 

accounts, freeze funds, and trigger customer-facing outages 

if not resolved. Moreover, network partitions exacerbate 

these problems since participants cannot reach the 

coordinator, and the blocking nature of 2PC may prolong 

outages. 

Saga’s failure modes commonly relate to compensating 

transaction design failures, partial application of side effects 

(e.g., notification sent before compensation), and difficulty in 

guaranteeing global invariants during error windows. 

Compensation logic may be non-trivial, especially for 

operations that are not naturally reversible (e.g., sending 

notifications, interacting with external settlement 

networks). Moreover, race conditions can produce 

anomalies where compensations are applied concurrently 

with subsequent operations. Robust Saga implementations 

thus require idempotent operations, careful ordering, and 

compensating semantics designed from the outset 

(Christudas & Christudas, 2019; Kleppmann, 2017; Zhang et 

al., 2019). 

Operational Complexity and Maintainability 

 2PC centralizes complexity within the coordinator and 

participant protocol implementations, which can simplify 

reasonability but increases operational burden for database 

and infrastructure engineers. The need to manage 

coordinator failover, persistent logs, and participant 

timeouts introduces additional operational complexity (Fan 

et al., 2020). 

Saga shifts complexity to the application domain: business 

logic must include compensating transactions, and 

orchestration or choreography engines must handle 

sequencing, retries, and partial failures. From a 

maintainability standpoint, code becomes entangled with 

compensation semantics, demanding rigorous testing, 

simulation, and documentation. However, the microservice 

model—where teams own services and their data—aligns 

well with Saga’s decomposition, allowing team-level 

autonomy and localized reasoning about failure handling 

(Lewis & Fowler, 2014; Newman, 2021). 

Hybrid Strategies and Pattern Selection 

 The literature and domain analysis suggest that hybrid 

strategies can combine the strengths of both approaches. For 

example, within a bounded context where multiple 

operations touch a tightly coupled subset of data, localized 

2PC or even database-level transactions may be acceptable 

and less risky since participant count is small and latency 
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implications contained. Across bounded contexts, Saga 

orchestration can manage long-running, cross-service 

workflows. Further hybridization includes using 

compensation for business-level rollback while employing 

lightweight consensus protocols for critical primitive state 

(Zhang et al., 2019; Hebbar, 2025). The design of such 

hybrids should be guided by transaction criticality 

classification, latency budgets, and recovery windows. 

DISCUSSION 
This section elaborates interpretively on the implications of 

the results, discusses limitations, and articulates detailed 

practical recommendations and future research directions. 

The discussion traverses theoretical foundations, 

counterarguments, and prescriptive design fluency for 

architects of banking APIs. 

Theoretical Interpretations and Trade-offs 

 At a theoretical level, the trade-off between 2PC and Saga is 

an instantiation of the broader CAP and FLP-like tensions in 

distributed computing: coordination enables stronger 

consistency but at the cost of availability and performance; 

decentralization trades immediate consistency for 

availability and partition tolerance (Kleppmann, 2017). In 

banking, where correctness is non-negotiable, the 

temptation is to favor coordination protocols. However, 

practical systems cannot ignore performance and resilience; 

customer expectations and regulatory requirements 

demand both correctness and high availability. Thus, an 

exclusive reliance on 2PC in a microservice architecture may 

be impractical. 

An important nuance arises in distinguishing correctness at 

the technical level (e.g., atomic commit) from correctness at 

the business level (e.g., maintaining ledger invariants and 

regulatory compliance). Saga, when implemented with well-

designed compensations, can preserve business correctness 

even without providing strict atomicity at the storage level. 

Compensations can be designed to ensure that, after 

recovery, the system satisfies its business invariants, albeit 

with transient states. This reframing suggests that 

transactional semantics should be recast in terms of 

business invariants amenable to compensation-based 

recovery, not solely database-level atomicity (Christudas & 

Christudas, 2019; Kleppmann, 2017). 

Counter-Arguments and Rebuttals 

 A common counter-argument is that Saga's eventual 

consistency is fundamentally inadequate for banking due to 

the potential for transient double-spend or inconsistent 

balance presentation. Proponents of this view argue that 

only strong atomicity prevents such anomalies. In response, 

several points mitigate this concern. First, many banking 

operations can be decomposed into critically atomic 

primitives and less-critical follow-on steps; atomicity can be 

enforced for the primitives (via localized strong 

transactions), while longer workflows are managed as Sagas. 

Second, engineering practices—such as provisional holds, 

reservation semantics, and compensations—can prevent 

double-spend exposure to end-users. For example, a 

provisional hold on funds (a local atomic operation) can be 

used to guarantee a reserve while subsequent operations 

complete asynchronously—this design pattern leverages a 

hybrid of atomic primitives and Saga orchestration to 

balance correctness and responsiveness (Hebbar, 2025; 

Newman, 2021). 

Another rebuttal posits that 2PC, when augmented with new 

consensus protocols or non-blocking commit variants (e.g., 

2PC*), can be made performant and non-blocking. Research 

into protocol variants and optimized concurrency control 

demonstrates promising directions (Fan et al., 2020). Yet, 

such protocols often entail significant complexity and 

require specialized infrastructure support, limiting their 

practical adoption across polyglot microservice ecosystems. 

Thus, while advanced 2PC variants may reduce some 

drawbacks, they do not universally eliminate the 

fundamental cost of centralized coordination. 

Design Prescriptions and Best Practices for Banking APIs 

 Drawing on the theoretical synthesis and scenario analysis, 

a set of concrete design prescriptions is offered for banking 

architects: 

1. Classify transaction criticality: Establish clear labels 

for operations: (a) critical atomic primitives (e.g., ledger 

updates that must be atomic at the account level), (b) 

medium-critical workflows (e.g., cross-service 

reconciliation, external settlements), and (c) non-critical 

processes (e.g., notifications, analytics ingestion). Use strong 

coordination only for (a); employ Saga orchestration and 

idempotent compensations for (b) and (c) (Hebbar, 2025; 

Navarro, 2022). 

2. Use local strong transactions inside bounded 

contexts: Preserve atomicity at the service/database 

boundary using local DB transactions or lightweight 

coordinator protocols where the participant set is small and 

co-located. This reduces complexity while guaranteeing 

primitives (Christudas & Christudas, 2019; Newman, 2021). 

3. Design compensations as first-class artifacts: 

Compensation logic must be specified, tested, and versioned 

alongside forward business logic. Consider that not all 

operations are easily reversible—design for safe 

compensations by introducing reversible primitives (e.g., 

holds and releases) wherever possible (Christudas & 

Christudas, 2019; Kleppmann, 2017). 

4. Adopt orchestration engines for complex 

workflows: Explicit orchestrators (e.g., state machines or 

workflow engines) centralize Saga control and simplify 

recovery logic compared to ad-hoc choreography. 

Orchestrators provide clearer failure semantics, centralized 

observability, and easier reasoning about long-running 

flows (Bashtovyi & Fechan, 2024; Toffetti et al., 2015). 

5. Invest in idempotency and retry semantics: 

Endpoints should be idempotent and designed for safe 
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retries; compensating transactions should also be 

idempotent. Explicit idempotency keys and deduplication 

logic prevent double application under retries and network 

duplication (Godage et al., 2023; Newman, 2021). 

6. Surface eventuality semantics in APIs: Banking APIs 

should explicitly communicate the finality semantics of 

operations (e.g., "tentative" vs. "final") so clients can adapt 

UI/UX and downstream reconciliation. This reduces 

confusion and supports better user experience during 

eventual consistency windows (Christudas & Christudas, 

2019). 

7. Implement robust observability and reconciliation: 

End-to-end tracing, audit logs, and reconciliation jobs are 

necessary to detect and remediate anomalies induced by 

distributed failure. Recovery tooling should integrate with 

operational runbooks to handle prepared states in 2PC or 

unresolved compensations in Sagas (González-Aparicio et 

al., 2023; Godage et al., 2023). 

8. Use hybrid transactional middleware where 

appropriate: Emerging platforms that support polyglot 

transactions and reconciliation (e.g., GRIT-like systems) 

provide new options for combining local transactional 

guarantees with cross-service coordination. Evaluate these 

platforms carefully for integration cost and operational 

maturity (Zhang et al., 2019; González-Aparicio et al., 2023). 

Limitations and Future Work 

This research is constrained by its theoretical nature and 

exclusive reliance on the provided references; empirical 

validation in active banking environments would strengthen 

and quantify the trade-offs described. Future research 

should pursue formal verification of compensation logic and 

recovery protocols, develop middleware that dynamically 

chooses coordination strategies based on runtime 

conditions, and carry out controlled experiments comparing 

throughput, latency, and correctness incidents under both 

patterns across realistic bank-like workloads. Additionally, 

development of domain-specific languages for 

compensation specification and model checking would 

materially reduce the risk inherent in Saga design. 

CONCLUSION 
This paper has provided an exhaustive theoretical analysis 

and prescriptive synthesis of distributed transaction 

strategies—Two-Phase Commit and Saga—applied to 

microservice-based banking APIs. Both patterns present 

compelling advantages and salient drawbacks: 2PC’s strong 

atomicity versus Saga’s scalability and resilience. Banking 

architectures should not adopt either pattern wholesale but 

instead apply a nuanced hybrid approach: enforcing atomic 

primitives locally, orchestrating cross-service workflows via 

Saga or orchestrators, and employing carefully designed 

compensations and observability practices to ensure 

business correctness. 

The decision framework and practical prescriptions distilled 

herein aim to empower architects to make design choices 

that reflect the nuanced risk, performance, and operational 

constraints endemic to banking. Furthermore, the field 

would benefit from tooling and formal methods that reduce 

the difficulty of specifying and verifying compensating 

transactions, alongside empirical studies that quantify 

operational trade-offs in live banking systems. As banks 

evolve toward increasingly decentralized architectures, such 

research and tooling will be critical to preserving monetary 

correctness while delivering scalable, resilient services to 

customers. 
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