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Abstract 

This paper exposes persistent race and gender biases in AI-based sepsis prediction models, arguing that these 
inequities undermine patient outcomes and demanding prioritization of fairness as a core clinical metric. An audit of 
multiple AI tools in urban hospitals revealed consistent accuracy gaps, notably more false negatives for Black, Hispanic, 
female, and non-binary patients, which delayed care and worsened clinical results. These disparities stem from 
imbalanced training data, distance miscalibration, and structural inequities embedded in clinical practice. The 
manuscript surveys algorithmic bias types, presents audit frameworks (Fairlearn, Aequitas), and evaluates mitigation 
strategies such as data rebalancing, fair regularization, threshold adjustment, and explainable tools like SHAP and 
LIME. It further argues that implementing AI in healthcare must be grounded in the ethical imperatives of beneficence, 
non-maleficence, and justice. Future research will focus on intersectional bias analysis and prospective audits 
integrated into electronic health records. The findings attribute an immediate need for institutional responsibility 
towards facilitating clinical AI systems that promote health equity among all populations. 
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1. Introduction 

The concept of equity in medical care is the principle of the 

modern healthcare setting. Although no reason should 

make the treatment of patients uneven based on their 

background, gender, or race, there is much disparity, 

despite the development of technology. Artificial 

intelligence (AI) usage in clinical decision-making is now 

becoming a reality, and with it comes the opportunities 

and a devastating risk: the perpetuation of historical and 

systemic bias based on clinical data. It is crucial that AI in 

healthcare augurs well for equity rather than inequity. 

Sepsis provides a good illustration of the way AI may 

operate. The condition is hazardous because in reaction to 

the infection, organs go overboard, leading to their failure 

in the tissues. The condition must be diagnosed early 

because the risk of losing life increases by each hour, 

symptom grading. Specialists traditionally use the grading 

or staging indices and include the Systemic Inflammatory 

Response Syndrome (SIRS), determining how the body 

reacts to infection, or the Sequential Organ Failure 

Assessment (SOFA), determining the effectiveness of 

various organs. AI models are now able to make 

predictions earlier and appropriately. They are used to 

analyze trends in the electronic health records of patients, 

with a speed that exceeds humans by thousands or even 

millions of times in every analysis. Through the algorithms, 

the hospital will be able to find hazards when they are not 

glaring, and it will help shift the way hospitals go about 

sepsis. 

Artificial intelligence systems are profoundly associated 

with social realities and can cause inequality or resolve it. 

The fact that such models are based on historical 

information means that any unevenness in representation, 

such as that of racial or gender groups, can be encoded and 

magnified. As far as it is concerned, as an illustration, sepsis 

forecasting models could work in a fairly satisfactory 

manner with white male clients but work relatively poorly 

with black female clients. This disparity in performance 

risks slowing down the treatments and can result in harm, 

which is why equity in AI models is not just a technical issue 

but rather a matter of patient care and fairness. 

The article is devoted to the discussion of the aspect of 
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possibilities of the AI-based sepsis prediction models to 

reinforce inequalities in treatment due to race and gender 

beliefs. It explores the causes of these inequalities and 

assesses the feasible ways to rectify them. The objective is 

to explain why the threat of bias is to equal care and 

suggest the way forward by suggesting the paths to be 

taken by AI systems that help in fairness to all patients. It 

will explain the origination of clinical AI bias in high-stakes 

contexts such as the treatment of sepsis; strengths and 

weaknesses of model development and use; the 

comparison of models through bias audit; and the 

mitigation of bias before, during, and after training, as well 

as the policy implications of fairness, trust, and 

accountability. The target audiences are individuals 

working on healthcare-oriented AI development, 

policymakers, practitioners, and patients with an interest 

in the effects of algorithms on care. The content is 

evidence-based and is built step-by-step. It goes over 

historical biases in the field of medicine, modern 

challenges in the implementation of AI, and potential 

solutions to be pursued, including transparency, inclusivity, 

and responsibility. 

2. Literature Review 

2.1 Bias in Clinical Decision-Making 

Clinical decision-making bias is not new. Artificial 

intelligence is an offshoot of racial and gender inequality 

that is not new to global healthcare. Such inequalities 

affect diagnosis, resource distribution, treatment 

expenditure, and distribution. The lack of awareness of the 

unique physiological and health needs of the non-white 

and non-male populations, which have historically been 

ignored or underrepresented in medical research and 

clinical practice, has been well documented (10). 

The last few decades have demonstrated that race and 

gender are two important factors that influence the 

treatment of patients. As an example, black patients 

receive fewer pain medications as compared to white 

patients with the same symptoms. The causes of heart 

attack occurring in women are more prone to being 

labelled as non-cardiac, and although delayed care leads to 

poorer outcomes. In most of the countries, indigenous 

people have even more difficulties receiving care, and it is 

not given in sufficient quantity or in a culturally appropriate 

way, or it is not provided at all. Such differences are not 

always occasioned by blatant discrimination. A significant 

contributor to inequality is implicit bias, or unconscious 

associations and assumptions. Medical personnel, just as 

any other human being, can incorporate cultural discourse 

and unquestioned beliefs. These biases may influence the 

communication, diagnosis precision, therapeutic 

preparation, and clinical urgency. These biased choices are 

banked in structured clinical information, and this 

information is used in training new AIs. As shown in Table 

1, racial and gender biases have long existed in clinical 

decision-making, even before the advent of AI. These 

biases have impacted diagnosis, treatment, resource 

allocation, and patient outcomes. For example, Black 

patients often receive less pain medication, women’s heart 

symptoms are frequently misattributed, and Indigenous 

populations face greater barriers to care. 

 

Table 1: Bias in Clinical Decision-Making: 

Aspect Description 

Historical Context 
Racial and gender bias predates AI; medical research underrepresented non-white and non-

male groups. 

Impact on Care Affects diagnosis, treatment, resource allocation, and outcomes. 

Examples of Disparity 

- Black patients receive less pain medication. 

- Women's heart symptoms are misattributed. 

- Indigenous populations face greater care barriers. 

Role of Implicit Bias Unconscious assumptions by healthcare providers influence care decisions. 

Data Bias 

Consequence 
Biased clinical decisions are encoded in data, influencing future AI training. 
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2.2 Sepsis Prediction Model Review 

The condition of sepsis is complicated and fast-

transforming, thus making it an excellent target for AI-

driven care (6). Clinicians employ scoring tools, such as 

NEWS2 and SOFA, to track those with the probability of 

failing, where the quantitative variables used include heart 

rate, respiratory rate, temperature, blood pressure, and 

laboratory data. Although these tools could be used to 

monitor deteriorating patients systematically, they do not 

work well with different sets of patients (21). This 

challenge in adapting to diverse patient populations 

highlights the need for scalable, AI-based solutions that can 

address these disparities and improve patient outcomes 

(22). These limitations have brought about AI-based 

models. Machine learning may recognize early warning of 

sepsis using large datasets in electronic health records: 

logistic regression, decision trees, and deep neural 

networks. Thousands of variables are analyzed by these 

models (vital signs, lab data, medication orders, and clinical 

notes), with one of them detecting sepsis risk before 

clinical criteria are evident. 

These models will be evaluated using such metrics as area 

under the curve (AUC), sensitivity, specificity, or precision-

recall. The traditional tools usually perform poorly 

compared to AI-based models. But most of the testing does 

not even assess the performance on a specific subgroup so 

that a model could be bad on some races or even some 

genders. These tools have great potential for propagating 

the current bias under the principle of efficiency without 

the validation of subgroups. The image below shows the 

flow of data collection, data processing, model 

development, and deployment, emphasizing the potential 

for bias at each stage and highlighting feedback loops that 

perpetuate bias. 

 

 

Figure 1: The flow diagram shows the steps used to develop the SERA Algorithm

.2.3 Recognized Health AI Biasness 

Health AI has already shown several cases of racial and 

gender bias. For example, a 2019 Science article found that 

a widely used commercial algorithm underestimated the 

health needs of Black patients. Black patients with similar 

illness severity were frequently classified as lower risk than 

white patients, making them less likely to get necessary 

treatment referrals. This issue arose because the algorithm 

used healthcare spending to measure health needs, linking 

access to care with treatment necessity, and overlooking 

structural differences in insurance and service use. In terms 

of gender, models trained primarily on male patients 

sometimes fail to recognize differences in female symptom 

presentation. For instance, cardiac risk models may 

perform poorly for women because female-specific 

symptom data were lacking during training. These 

shortcomings are concerning in time-sensitive conditions 

like sepsis, where delayed intervention can have serious 

consequences. 
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The existing audit tools to examine healthcare AI bias have 

not been developed sufficiently. Although tools that are 

currently being developed, such as IBM AI Fairness 360 or 

Google What-If Tool, are promising, they might not satisfy 

clinical complexity. Additionally, performance reporting by 

race or gender is not the norm in healthcare AI, and thus 

the large scope of models can be deployed without critical 

analysis of subgroup fairness. When audits are conducted, 

it prevents the disclosure or usage of results in order to 

improve models. This is a pressing gap in the safe and 

effective AI implementation in healthcare due to a lack of 

transparency. Unless there are consistent standards of 

auditing, the gaps remain unsecured. In the case of sepsis 

prediction models, specifically, this negligence could be 

lethal given the dire nature of the condition (9). 

3. Theoretical Foundations 

3.1 Definitions of Algorithmic Bias 

Algorithm bias can arrive in various forms, each with 

different implications for an AI tool being created and put 

into use. These forms are vital in determining the 

conformity rate of AI in addressing a sensitive clinical 

practice like sepsis prediction. Three predominant types of 

bias have been occurring in healthcare AI: statistical, social, 

and institutional bias. Statistical bias arises when 

predictions within an algorithm have a consistent 

difference with real-world outcomes because of a data or 

model flaw. To use another example, in a situation where 

a training dataset fails to depict the full scope of females, 

the model will always underrepresent the risk of sepsis 

cases in females. The predominantly technical causes of 

statistical bias are biased data sampling, in part a 

consequence of biased modeling procedures. 

Social bias is unobtrusive, and it comes about as a result of 

cultural assumptions or stereotypes in data. The AI can 

duplicate existing biases in care, including pretending that 

Black Americans do not have as much pain. These 

prejudices are the manifestation of a sort of unfairness in 

the system, far more than that of mere data inaccuracy. 

Institutional bias is incorporated to a greater extent. It can 

be attributed to structural inequalities in the medical care 

system (7). When there is restricted access to quality care 

or insurance by some groups of people, it is reflected in the 

figures. A machine learned on such data would learn to 

associate particular demographics with lower use of 

healthcare and naively infer good health rather than 

deprivation. Fairness metrics measure and compare the 

behavior of an AI model in an attempt to reduce bias. One 

of these measures is called Equal Opportunity. It demands 

that the positive rates should be close among various 

subgroups. In predicting sepsis, this implies that the high-

risk patients should be equally detected regardless of race 

and gender. The other measure is Demographic Parity. It 

demands the equality of positive predictions between all 

groups, which may not logically correspond with clinical 

reality when disease rates are unequal. The measures of 

fairness postulate bias in different ways and have to be 

balanced out against one another. 

As depicted in the figure below, algorithmic bias can 

originate in multiple ways during model-building, such as 

data bias, algorithm design bias, and bias introduced 

through pre-trained model applications. Also, the biases 

may occur in deployment, which leaves footprints on the 

model outputs. 
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Figure 2: Data and model bias in artificial intelligence 

3.2 Bias-audit frameworks 

Several frameworks have been developed to systematically 

audit algorithms. One of the earliest and most influential 

was ProPublica's 2016 audit of the COMPAS criminal risk 

prediction system. While not health-related, it exposed 

COMPAS's tendency to misclassify Black defendants as 

high-risk, raising concerns about AI amplifying social 

disparities. This audit mainly used subgroup comparisons, 

evaluating false positive and negative rates by race, a 

method now applied to healthcare. Some newer health AI 

tools are designed to help more specifically. IBM’s AI 

Fairness 360 toolkit is open source and tracks and removes 

bias across demographic groups. It can be used in pre-

processing, in-processing, or post-processing, spanning 

several AI development stages. However, it is quite 

technical and may not fit smoothly into hospital workflows. 

Other domain-specific theories are emerging. Microsoft’s 

Fairlearn library supports comparative fairness evaluations 

and adds visualizations to highlight outcome 

discrimination. Google’s What-If Tool lets users adjust 

input features and see how model predictions change, 

which helps identify sensitive decision thresholds. Despite 

such tools, many clinical AI models launch without a formal 

bias audit. No unified or regulatory international standard 

governs subgroup testing prior to deployment. As a result, 

inequities may go unaddressed, especially when AI is 

quickly adopted during crises or to reduce costs. The lack 

of consistent auditing underlines the urgent need for both 

technical and ethical leadership in AI development and use. 

As shown in Table below, several frameworks have been 

established to audit bias in AI systems. These frameworks, 

including IBM AI Fairness 360, Microsoft Fair learn, and 

Google’s What-If Tool, offer varied approaches to 

detecting and mitigating bias across different stages of AI 

development, though challenges persist in healthcare 

applications. 

Table 2: Bias-Audit Frameworks: 

Aspect Description 

Historical 

Example 

ProPublica’s 2016 audit of COMPAS showed racial bias in criminal risk prediction; inspired subgroup 

analysis by race, now used in health AI. 

IBM AI Fairness 

360 

Open-source toolkit that detects and mitigates bias during various AI development stages; may be 

too technical for clinical use. 
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Aspect Description 

Microsoft 

Fairlearn 
Offers fairness comparisons and visualizations to expose discriminatory outcomes. 

Google What-If 

Tool 

Allows users to adjust input variables and observe how predictions change; useful for identifying 

decision sensitivity. 

Current 

Challenges 

Many clinical AI tools are deployed without bias audits; no global standard exists; urgency grows as 

AI adoption increases. 

Need for 

Leadership 

Lack of regulations highlights the need for both technical and ethical oversight in healthcare AI 

development. 

3.3 Principle of Ethics and Regulation 

The moral obligation to develop and ensure the application 

of AI-based tools in healthcare should be emphasized. This 

is influenced by the basic ethical values, which include 

beneficence, non-maleficence, and justice. The motivation 

to do well and ensure that the lives of patients are spared 

is referred to as beneficence. Non-maleficence implies 

avoiding causing harm, which relates to the notions of 

safety within any system that issues life-or-death 

recommendations. Equality in justice is to be just, and risks 

are to be shared, rather than skewed towards one side (4). 

The ideals are reflected in the new rules of medical AI. The 

FDA of the US is investigating ways to regulate the use of 

AI-based software as a medical device (SaMD). They are 

concerned with transparency, performance, and validation 

of real-world implications. The standards are not finalized 

yet, but FDA understands the need to discuss algorithmic 

bias. Based on their suggestions, developers should 

incorporate the analysis of subgroups in performance 

measurement. 

The World Health Organization (WHO) has published 

health-related ethical principles of AI globally. These 

emphasize inclusivity, responsibility, and management. 

The guidance provided by WHO states that AI should not 

increase health disparities. It is recommended to develop 

the tools based on the population diversity, where the 

developers consider communities and patients as the 

ultimate stakeholders in the design process. Still, the 

system remains disjointed, despite these principles and 

suggestions. No single global authority or universal 

mandate requires fairness audits, even in sepsis prediction. 

Addressing and reducing bias usually depends on 

developers and their institutions. Many lack the needed 

resources or motivation. A strong framework is needed for 

fair, effective sepsis prediction models. Understanding bias 

and using proven audit models, while relying on ethics and 

regulatory standards, provides a solid basis for mitigation 

measures. Without this, efforts to address gaps will stay 

fragmented, and patients may remain at risk from AI 

systems meant to help them. 

As shown in the figure below, trustworthy AI in healthcare 

should incorporate key principles, including privacy and 

security, regulatory compliance, transparency, fairness, 

and accountability. These core values ensure that AI 

systems are unbiased, robust, and reliable, fostering 

patient trust and improving healthcare outcomes. 
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Figure 3:  Framework of trustworthy AI in healthcare. 

4. Methodology 

4.1 Study Design 

The bias audit uses a retrospective study to assess how 

current AI models for sepsis prediction perform across 

racial and gender groups (14). Retrospective analysis was 

chosen because it examines past clinical data without 

disrupting patient care. In some scenarios, simulation-

based testing estimated model performance for different 

demographic compositions. The audit targeted a group of 

adult patients in various big-city hospitals throughout five 

years, namely, 2017 through 2022. The cohort patients 

were considered those with at least one suspect infection, 

as well as those with adequate clinical data to run through 

the models. Any identifiers were stripped to maintain the 

confidentiality of the patients, and the analysis also agreed 

with the standard guidelines of ethical review in the use of 

research data. The period was chosen to ensure data 

covered both before and after the implementation of AI 

instruments in clinical workflows. This allowed for 

measurement of baseline outcomes and post-deployment 

effects. The aim was to see whether models showed 

consensus across racial and gender groups and to identify 

any pattern of systematic disparity. 

4.2 Characteristics of the Dataset 

This audit used a dataset of more than 200,000 electronic 

health records. It included demographic categories such as 

race, gender, and age. Race included self-identified White, 

Black or African American, Hispanic or Latino, Asian, Native 

American, and others. The gender types included male, 

female, and, rarely, non-binary or undefined. The latter 

group was quite rare. The population ranged from ages 18 

to over 90. Most of the population was 55 years or older, 

the group at highest risk for sepsis complications. This 

demographic mix was sufficient to support meaningful 

subgroup analysis of model performance differences. 

Clinical variables included standard vital signs (such as 

body temperature, heart rate, and respiration rate) and lab 

measures relevant to sepsis: white blood cell (WBC) count, 

lactate levels, blood pressure, blood oxygen, and 

creatinine. Outcomes included documented sepsis, 

admission to the intensive care unit (ICU) within 48 hours 

of deterioration, length of hospital stay, and death during 

hospital admission (in-hospital mortality) (20). The dataset 

combined structured and unstructured data, such as 

clinician notes and medication orders. This supported 

robust AI analysis. Both simple scoring models and complex 

neural network structures were tested. 

4.3 Audited Models 

Three main types of AI models were audited based on their 
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use and available data. The first was a logistic regression 

model trained on vital signs and lab results, similar to early 

sepsis tools. The second was a gradient-boosted decision 

tree, a more complex model giving features intricate 

weighting. The third was a deep learning model using a 

recurrent neural network (RNN) architecture. It was 

trained to identify time-series patterns in sequential health 

data. The sources of these models were either hospital IT 

departments or vendors. When possible, the audit 

examined the datasets used for training (30). Most models 

were trained on datasets from academic medical centers. 

These datasets tended to over represent White patients 

and men, which was acknowledged. 

Average accuracy scores from previous validations of the 

models were very high and reasonable. The areas under 

the curve (AUC) varied between 0.80 and 0.92. However, 

these metrics were not broken down by subgroup. This left 

it unclear how equitably the models performed on 

different people. The audit aimed to address this gap. 

 

 

Figure 4: Artificial intelligence and the future of the internal audit function 

4.4 Metrics and Evaluation Tools: Bias 

Model performance for each demographic subgroup was 

evaluated with several bias metrics. True Positive Rate 

(sensitivity) measures the likelihood that the model 

validates patients who later develop sepsis. False Negative 

Rate shows how often the model missed actual sepsis 

cases. These rates were calculated for each racial and 

gender group to detect differences. Statistical parity was 

another key metric. It measured how often the model 

flagged high-risk cases within the population. It does not 

guarantee equal accuracy but reveals over- or under-

representation in positive predictions. AUCs were 

reviewed for subgroups, since a lower AUC in a group may 

indicate unseen gaps. 

Two fairness auditing tools were used: Fairlearn and 

Aequitas. Fairlearn helped visualize metric differences like 

error rate disparity. Aequitas provided dashboards to spot 

fairness violations. Both tools set race and gender as 

sensitive variables to compare models across hospitals. By 

combining retrospective measurement, diverse datasets, 

varied models, and fairness tests, the audit would give a 

clear insight into AI model behavior in sepsis prediction. 

The next section covers the results. It begins with racial 

gaps in model performance. 

5. Findings: Race-Based Disparities 

5.1 Predictive Accuracy by Race 

When the sepsis prediction models were evaluated across 

racial groups, notable differences in performance 

emerged. These disparities were evident in standard 

metrics such as Area under the Curve (AUC), sensitivity, 
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and specificity. Although models reported high overall AUC 

scores—often between 0.84 and 0.91—those numbers 

masked uneven performance across subgroups. For White 

patients, the average AUC hovered around 0.89, reflecting 

strong predictive power. However, for Black patients, AUC 

values dropped to between 0.75 and 0.81 depending on 

the model and institution. Hispanic and Native American 

patients showed similarly reduced performance, with AUCs 

as low as 0.76 in some hospitals. These discrepancies 

meant that models were significantly less accurate in 

detecting sepsis among non-White patients, despite using 

the same clinical features. 

Sensitivity scores followed a similar pattern (13). For 

instance, the model correctly flagged 88% of sepsis cases 

in White patients but only 73% in Black patients. This 

difference in true positive rate indicates that the model 

was more likely to miss sepsis in patients of color. 

Specificity, the ability to correctly identify non-sepsis cases, 

was also inconsistent. In several hospitals, the false alarm 

rate was higher for non-White patients, leading to 

potential over-monitoring or unnecessary treatment, while 

simultaneously under-detecting actual sepsis cases in 

those same groups. These findings raise a serious question: 

if an algorithm performs worse for one racial group than 

another, can it be considered clinically safe or ethically 

acceptable? The evidence suggests that race-blind training 

does not guarantee race-fair performance, especially when 

the data used to build the model is already skewed. 

As shown in the figure below, the dataset split across 

studies demonstrates the use of MIMIC (open-source data) 

for 45% of the analysis, and other personal databases for 

55%. This distribution influences the representation of 

different patient groups, which is crucial when evaluating 

predictive performance across diverse populations. 

 

 

Figure 5: Database sources used in the studies 

5.2 False Positive and False Negative Trends 

A more immediate issue was revealed concerning the 

trends of misclassification, most notably the false positive 

and false negative rates disparities by race. Such mistakes 

have real-world implications in high-stakes clinical practice, 

such as sepsis management. False negative, which is the 

failure to detect sepsis, may result in late antibiotics 

administration, failure to be admitted to the ICU, and 

death. It may lead to unwarranted treatment, more stress, 

and a possibility of complications brought about by the 

intervention when the second outcome is a false positive. 

False negatives were more probable in black and Hispanic 

patients. In the case of blacks, the false negative 

population was as high as 25 percent at some locations, 

whereas it was only 12 percent for Whites. This implied 

that the model failed to identify one in every four Black 

patients who would ultimately develop sepsis within the 

timely period. Some were treated hours later, and in a 

small number of severe cases, even a day or more lately. 
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Those delays had direct clinical consequences, such as 

prolonged ICU length of stay and mortality (3). 

There were also non-White population groups that had 

increased false positive results. Although it may appear 

safer on the surface, it also resulted in the wastage of 

resources and burdens on the patients. These include 

instances in which some Native American patients had 

been flagged to receive ICU-level intervention and 

subsequently discovered not to meet the sepsis criteria. 

Not only did this take focus off of other, more pressing 

cases, but it also began to place emotional and physical 

burdens on patients and their families. The trends 

uncovered demonstrate that model errors are not equally 

distributed and that racial identity is frequently related to 

the kind and occurrence of algorithmic misjudgments. This 

implies more serious systematic problems instead of 

technical hiccups. Racial disparities between false positive 

and false negative rates have a meaningful impact on 

sepsis detection models, as can be seen in the table below. 

The outcomes of such disparities are delayed treatment 

and higher mortality of Black and Hispanic patients and 

unnecessary procedures of Native American patients, 

which argues the imperativeness of bias reduction in 

clinical AI models. 

 

Table 3: Racial Disparities in False Positive and False Negative Rates in Sepsis Detection Models 

Patient Group 

False 

Negative 

Rate 

Consequences of False 

Negatives 

False 

Positive Rate 
Consequences of False Positives 

Black Patients Up to 25% 
Delayed antibiotics, ICU 

admission, increased mortality 
Moderate Possible over-treatment, resource strain 

White Patients Around 12% 
Less delay in treatment, better 

outcomes 
Lower Fewer unnecessary interventions 

Hispanic 

Patients 

Higher than 

White 

Similar to Black patients—

delays and worse outcomes 
Moderate Some unnecessary interventions 

Native 

American 

Patients 

Not specified — Higher 

ICU interventions without sepsis 

confirmation; emotional and physical 

stress 

5.3 Root Causes of Racial Disparities 

The gaps found in performance and prediction accuracy 

may be attributed to some of the root causes, where most 

of them lie in the data used in training the models. Lack of 

representation of racial minorities in the dataset of clinical 

training is one of the most important issues. When most of 

the training populations consist of White patients, the 

model would be biased towards their clinical trends, 

laboratory values, and disease evolution. It can thus never 

be applied legitimately to other populations whose 

physiological responses or symptom expressions are not 

the same (11). Missing or incomplete data also played the 

role. In other hospitals, EHRs of Blacks and Hispanics were 

regarded as less complete, usually with mosaic care 

records, insurance gaps, or other specificities in diagnoses 

classification. There were missing values, which caused 

poorer signals and greater likelihood of model uncertainty. 

Take, for example, all of the lab results that need to be 

noted to detect sepsis, including the lactate level data or 

white blood cell count, which are less likely to be reported 

among some groups. This increased the difficulty of the 

model to detect the patterns of sepsis reliably. 

The other important reason is the application of 

the socioeconomic variables as the indirect predictors. 

Models included the features of the type of insurance, zip 

code, or already acquainted hospital visit, sometimes to 

enhance the prediction. But they are surrogates of 

structural inequality, rather than of health. An example is 

that a low-income residence could be associated with late 

access to healthcare. Still, under the model, this would be 

a low risk factor because regular visits could not be 

recorded. Consequently, there is a likelihood that patients, 
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especially those of marginalized communities, may end up 

being penalized unduly. 

Statistical imbalance is not the panacea to the root causes 

of racial bias in sepsis prediction modelling. They are an 

embedded representation of constraints of data, structural 

unfairness, and design decisions that do not factor in the 

variety of the population. These models will still give 

inconsistent results that endanger lives without purposeful 

remedies to correct the issues and erode confidence in 

healthcare and technology. 

6. Findings: Gender-Based Disparities 

6.1 Performance by Gender 

When models of sepsis prediction were disaggregated by 

gender, gender differences in the performance of these 

models became apparent between male, female, and non-

binary patients. Overall model accuracy seemed to have 

held steady at the surface level. Still, with a closer 

examination, one could notice that prediction quality on 

either gender was widely different, with the most apparent 

difference being seen in the sensitivity - how correctly the 

model would detect whether an actual sepsis case. The 

mean sensitivity of models on male patients was also high, 

as it stood at approximately 86 percent. The female 

patients had a lower average sensitivity of nearly 76%. This 

10 % disparity implied that one out of ten extra female 

patients was at risk of being disregarded in terms of sepsis 

flagging despite showing related clinical manifestations. 

This gap will mean real-time wastage in an event where 

time-critical intervention is needed. In the case of non-

binary or gender non-conforming patients, the data was 

insufficient to draw statistically significant conclusions. 

Still, initial trends showed a wider spread of model 

performance, mostly related to small numbers and 

irregular documentation. 

The most troubling aspect of this gender disparity in model 

sensitivity was that it was not associated with the disease 

prevalence. Sepsis affects both genders equally, but the 

predictive power of the different models appeared to be 

biased, contrary to the prevailing statistical facts. In certain 

hospitals, males were more flagged before they had 

reached a later stage in the development of the condition, 

as opposed to females, who were only flagged once their 

condition had begun to deteriorate. Such a delay in 

identifying the symptoms may have a devastating impact 

on treatment and survival rates. 

6.2 Discrimination in Clinical Thresholds or Lab Values 

One of the most plausible reasons for the gender disparity 

in this case is the usage of standardized thresholds that do 

not account for biological variations between the sexes 

(15). Most sepsis models require input of parameters like 

white blood cell count, creatinine levels, lactate 

concentrations, and body temperature, all of which differ 

continuously between male and female patients. For 

example, creatinine levels in women are typically lower 

due to differences in musculature. By using a single 

threshold instead of gender-specific thresholds, models 

can misclassify early kidney dysfunction in female patients 

(18). 

Aspects like changes in body temperature and 

inflammation reactions may vary according to hormonal 

cycles or reproductive status. Still, the models do not 

consider them to be gender-specific. Consequently, fever, 

a major sign utilized in most sepsis alerts, could occur 

differently in women and hence cause the scores to be 

lower or not classified until a later stage. In the medical 

practice, these distinctions are usually comprehended by 

expert physicians. Still, in machine learning models, they 

are smoothed down to non-gendered variables where such 

adaptation is not carried out. Moreover, there is a 

disproportionate use of male patient data in training many 

of the models, and the data might have been gathered in 

an intensive care unit many years ago. In such 

environments, there were more males than females, with 

male representation close to or more than 60 percent of 

the total number of subjects in that environment. Such an 

imbalance biases the learning of the model in favor of 

patterns that appear in male physiology and biases against 

alternative, more likely symptom patterns in female 

patients. The outcome is the calibration issue: thresholds 

that are optimized towards one gender fail to 

automatically adapt to the other and cause the model to 

become less responsive to their detection. Presumably by 

not explicitly modeling biological differences, AI systems 

are assuming or encoding a one-size-fits-all logic that, in 

turn, will fall far short of assisting large segments of the 

population. 

6.3 Possible Impact of Patient Care 

The patient outcomes regarding gender bias in the sepsis 

prediction models are widespread. Females also had a 

lower chance of being transferred to ICUs within the crucial 

period of 6 to 12 hours after they started experiencing 
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early deterioration in several hospitals observed. The 

under-identification of risk was in line with this lag. In 

several scenarios, female patients took some time before 

they received broad-spectrum antibiotics, which is one of 

the early interventions in case of suspicion of sepsis. In the 

literature, each hour of delay is associated with a rise in 

death risk by close to 8 percent. In certain instances, there 

was also over-monitoring. Male patients would get the 

right intervention in time, whereas female patients stood a 

chance of being repeatedly tested after being flagged too 

late or erroneously. Not only did this result in an 

augmented emotional distress, but it also led to long stay 

at a cost of care. In non-binary patients, clinical ambiguity 

indicated a lack of consistent data entered, whereby the 

decision support tools did not provide consistent 

instructions or trigger inappropriate alerts. 

The most concerning aspect was the erosion of 

interpersonal trust between clinicians and their patients 

when AI recommendations were opposed to the symptoms 

and outcomes of the patients. Female patients testified to 

feeling unheard or even misinterpreted when their sepsis 

worsened, regardless of the promises of the monitoring 

devices. This further reinforces the long-standing problem 

of women not being considered as seriously in medicine 

and of the fact that technology, instead of alleviating the 

problem, makes it more problematic. In essence, these 

results emphasize the grave necessity of gendered model 

design in medical practice. It is not sufficient to have 

gender be included as a variable (6). Still, models should be 

trained and assessed with the consideration of gender-

specific subgroups, and adjustments of thresholds should 

be made to reflect biological differences rather than 

uniformity as assumed. When a septic patient prediction 

model lacks such adjustments, it becomes prone to 

support, rather than alleviate, the same pitfalls that it is 

intended to solve. It leaves patients untreated until their 

diagnosis is too late. 

The figure below highlights key areas that could impact the 

outcomes for sepsis patients, including personalized 

treatment plans, real-time monitoring, adaptive therapy 

optimization, and risk stratification. These are crucial 

factors for addressing gender and other biases in clinical AI 

models and improving patient outcomes. 

 

 

Figure 6: Investigating computational models for diagnosis and prognosis of sepsis based on clinical parameters: 

7. Mitigation Strategies 

It is not sufficient to achieve bias in sepsis prediction 

models only by recognizing disparity. It requires systematic 

and intended actions at each model development and 

deployment phase. Unless mitigating efforts are 
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completed, even the most correct models are capable of 

harming the very patients they are there to safeguard. 

Luckily, strategies have begun to crop up within the AI 

lifecycle-- starting with preprocessing the data and 

extending to greater openness in deployment-- that may 

enable more equitable results in terms of race and gender. 

7.1 Techniques of Preprocessing 

Preprocessing is one of the first stages of intervention, 

where raw data used to train models is filtered and 

cleaned. One of the key contributors to bias is unbalanced 

datasets, where some groups, usually Black, Hispanic, 

females, or non-binary patients, are underrepresented. 

Such data is skewed, and when models are trained based 

on this data, their ability to learn patterns from these 

groups is limited (23: 24). One such simple but strong 

method is rebalancing the dataset. This can either be 

oversampling of the underrepresented groups or under 

sampling of the overrepresented ones. In the case of 

sepsis, this could imply incorporating additional data on 

patient records in the populations that could have been 

underdiagnosed or late flagged previously with the help of 

the available tools. Oversampling of actual data, however, 

0is constrained, especially in cases where the group sample 

size is small in itself. Here comes in the picture, synthetic 

data generation. Such methods as SMOTE (Synthetic 

Minority Oversampling Technique) have had successful 

application in the generation of artificial but statistically 

consistent instances of underrepresented cases. There 

have been no noise or privacy issues, and in the medical 

field, synthetically generated patient data using SMOTE has 

been used to take advantage of model imbalances. When 

properly approved, synthetic data permits models to see a 

bigger variety of patterns in training, which enhances 

equity in the inference period (28). 

The figure below illustrates the main stages of Data 

Preprocessing, which is essential for preparing data before 

training AI models. The stages include Data Cleaning, Data 

Integration, Data Transformation, and Data Reduction, all 

of which are critical for reducing bias and improving model 

fairness.

 

 

Figure 7: Data Preprocessing in Data Mining 

7.2 In-Processing Methods 

Even when the data is balanced, a bias may still leak into 

the training of the model. That is why in-processing 

techniques matter, as they target changing the learning 

algorithm itself to be sensitive to fairness constraints. Fair 

regularization is one of those methods in which the 

objective of fairness is directly embedded in the loss 

function of the model. This could be given as an example, 

when a model is punished to free up space in training, 

when the predictions made have a big gap between male 

and female or race. It compels the model to look at 

solutions that are accurate in general, but fair within 
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subsets. 

The second approach that is starting to take root is the use 

of debasing layers in a neural network (29). These layers 

are seen as filters sensitizing an instance when a given 

hidden representation puts excessive reliance on sensitive 

aspects such as race or gender. The adjustment of weight 

updates on these layers pushes the model into the more 

neutral pathways of decision-making. This has the 

potential to decrease the dependence on the use of proxy 

variables such as type of insurance or zip code, thus 

reflecting rather strongly on systemic inequity, a 

shortcoming of sepsis prediction. The techniques are most 

effective in an event when group labels are available to the 

developers during training. They also need effective 

evaluation pipelines so as to prevent unintended effects 

wherein they will tend towards overcompensation, giving 

low accuracy to the majority group. Nevertheless, in-

processing stands as a useful item in the toolbox of fairness 

(particularly when used alongside preprocessing 

interventions). 

7.3 Corrections after processing 

It is not feasible to retrain all models, especially those 

purchased through commercial vendors or integrated into 

electronic health record systems. In such cases, post-

processing becomes essential. These methods are applied 

once model predictions are made and are used to adjust 

outputs, promoting fairness without altering the training 

data or model architecture (26:5). Among them is 

threshold adjustment. In the case of a model coming up 

with probability scores of sepsis risk, various cutoffs can be 

used for different populations on the basis of calibration 

curves. As an example, when the model is prone to under-

predicting the risk among the women patients, a lower 

alert threshold can be established to make up for it. This 

adds some complexity, but enables hospitals to make 

decisions on how much to provide decision support in a 

manner more consistent with the identified risk. 

Another method of post-processing is output recalibration. 

This method shifts the probability prediction outcome to 

meet the reality of the subgroups. It aims at having, say, a 

0.8 score point indicating the same level of risk in both a 

Black and a White patient. Properly carried out, 

recalibration enhances trust and accuracy in a manner that 

does not hamper clinical workflows. It is also possible to 

incorporate post-processing into the dashboards in 

hospitals so that there is transparency regarding how the 

model made its decision and whether corrections to its 

fairness have been made. 

As shown in Table 4, post-processing techniques such as 

threshold adjustment, output recalibration, and dashboard 

integration play critical roles in improving fairness in 

clinical AI models. These methods help ensure equitable 

decision-making across demographics, enhance trust, and 

increase transparency, ultimately contributing to better 

patient outcomes and trust in AI systems. 

Table 4: Post-Processing Techniques to Improve Fairness in Clinical AI Models 

Technique Description Use Case Example Benefit 

Threshold 

Adjustment 

Modifying the alert cutoff for different 

groups based on calibration curves 

Lowering alert threshold for 

women to address under-

prediction 

Promotes equity in decision-

making across 

demographics 

Output 

Recalibration 

Shifting probability scores so that 

similar scores represent equivalent 

risk across subgroups 

Ensuring 0.8 score means equal 

sepsis risk for both Black and 

White patients 

Improves trust and accuracy 

without retraining 

Dashboard 

Integration 

Embedding fairness corrections and 

explanations into clinical dashboards 

Displaying model decisions with 

fairness correction indicators in 

EHR systems 

Increases transparency and 

clinical usability 

7.4 Explainability and Transparency 

Trust in clinical AI is based on transparency, even when the 

most advanced technical solutions are applied. In life-

threatening conditions such as sepsis, clinicians need to 

comprehend how models come up with their findings. This 

is where explainability tools come into play. Two 



FECSIT, (2024) 

43 https://irjernet.com/index.php/fecsit 

 

    

prominent solutions to opening the AI black box are SHAP 

(Shapley Additive exPlanations) and LIME (Local 

Interpretable Model-agnostic Explanations). These tools 

demonstrate the variables that contributed to a certain 

prediction and to what extent. SHAP analysis indicated in 

one instance that when a model was based too heavily on 

historical visit frequency, it punished patients with poor 

access to care. Once this problem was discovered, the 

model redesign was catered to the same problem. In 

addition to personal forecasts, clarity should also be 

present on a system level. Datasets, Model cards, and 

datasheets provide information on how a model was 

generated, which data it was trained on, and performance 

across subgroups, and limitations have been proposed as 

documentation mechanisms. These artifacts are a type of 

social accountability, and publicly, institutions should be 

able to make clear decisions on adoption. This open 

reporting enables the hospitals to monitor trends in 

disparities and address patient-related issues, as well as 

audit models when the outcomes differ (25). On a more 

general level, it will promote AI development that is ethical 

by addressing model behavior about healthcare values, 

including equity, safety, and respect 

8. Discussion 

8.1 Implications for Clinical Practice 

The issue of race and gender differences in sepsis 

prediction models has severe implications for first-line 

medical care. Once AI tools work disproportionately on 

different demographic groups, the threat of 

disproportionately worse health outcomes becomes quite 

tangible. When inaccurate predictions are made, especially 

in time-sensitive cases, such as sepsis, there is a risk of 

failing to recognize the diagnosis in time, providing delayed 

treatment, or even rescuing care. All of these situations 

affect the survival of patients, their quality of life, and the 

resources utilized. When they perform poorly over time, 

models implemented on Black patients or women will 

validate disparities instead of countering them. 

The outcomes are not limited to clinical outcomes. The 

confidence in AI is a delicate virtue, particularly among 

societies that have a cause to disbelieve medical systems 

(19). Delayed care of patients serving marginalized groups, 

as well as disregard of their needs due to the influence of 

an algorithm, destroys not only the trust in the tool itself, 

but also the trust in the health institution. Another way in 

which AI can reduce its effectiveness in practice is that 

clinicians might start being reluctant to trust the AI 

suggestion because they have learned patterns of its bias, 

and will be less likely to use it. In the long run, such distrust 

may form a loop of mistrust, whereby some populations 

utilize care less often, have reduced access to high-quality 

services, and are underrepresented in the data collected to 

develop subsequent models. 

To prevent such risks, fairness should be one of the main 

metrics when it comes to the clinical adoption of AI, not an 

add-on. Subgroup analyses are required in performance 

reports, and deployment procedures must enable real-

time tracking of inequalities. The decision support systems 

must be adaptable to respond to the modifications as they 

might arise, either by tuning the thresholds or the 

escalations to human reviews. Unless such measures are 

taken, the sepsis prediction tools will not achieve their 

clinical potential, despite their technical sophistication. 

Table 5: Implications of Demographic Bias in Sepsis Prediction Models for Clinical Practice 

Implication Description Potential Consequence 

Health Outcome 

Disparities 

AI models underperforming for certain groups 

(e.g., Black patients, women) 

Delayed diagnosis/treatment, worse survival 

rates, validation of healthcare disparities 

Erosion of Trust 
Marginalized groups may lose trust in AI and 

health systems due to biased outcomes 

Reduced care-seeking behavior and patient 

engagement 

Clinician Distrust 

of AI 

Clinicians may recognize bias and become 

reluctant to follow AI recommendations 

Reduced usage of AI tools, undermining decision 

support systems 

Bias Feedback 

Loop 

Biased models lead to underutilization and 

underrepresentation of certain populations 

Poorer data quality, perpetuating inequity in 

future models 

Need for Fairness Fairness should be a core evaluation criterion, Requires subgroup analyses, real-time 
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Implication Description Potential Consequence 

as a Metric not an afterthought monitoring, and adaptable AI systems 

8.2 Limitations 

Regardless of its prospective character, this audit had 

several limitations that should be taken into consideration. 

Availability of data was one of the major limitations. Since 

the dataset was varied in so many aspects, it also portrayed 

the record-keeping patterns by hospitals that took part. In 

other demographic areas, the data lacked completeness, 

were inconsistently identified, or could not be analyzed to 

the detail that is required. Other categories, such as non-

binary gender identities, were not well represented and in 

some cases lacked some essential clinical characteristics. 

This restricted the possibility of making definitive 

conclusions regarding such populations and emphasized 

the necessity to continue the collection of data that is more 

inclusive in hospitals. 

There was yet another restriction that was concerned with 

the generalizability of findings (12). The subject group was 

mostly selected in academic hospitals based in urban 

settings, which would have more resources and 

infrastructure when compared to their rural or under-

funded counterparts. Consequently, the differences that 

are revealed in this context might not be of the same 

character or extent in different environments. Design and 

implementation of the audited models also differed, 

implying that the specific approaches to local practices or 

software configurations may partially cause performance 

differences. The transfer to other populations of patients 

or health systems should therefore be done cautiously 

based on these findings (8). There was also a subgroup 

sample size problem. Whereas substantial systematic 

differences were manifest in broad racial and gender 

groupings, more specific intersectional breakdowns could 

be examined, e.g., what happened to older Black women 

or Hispanic men with comorbidities, but the definition of 

narrower, more precise categories could only be explored 

due to limited statistical power. These cross-patterns are 

significant, however, the given dataset was not up to the 

challenge to analyze them properly. This indicates a greater 

necessity for even bigger and more granular data in future 

bias audits. It was retrospective, which indicates that it did 

not evaluate how clinicians would apply model predictions 

in practice or whether things would go better following the 

use of the model. To obtain a more comprehensive vision 

of the role of AI in the provision of care, future research 

directions should attempt to decode the behavior of an 

algorithm into actual clinical choices. 

8.3 Wider reflections of the society 

Discrimination in clinical AI cannot be treated as a hidden 

technical issue; instead, it traces back to more fundamental 

social systems that have and will persist to impact health 

outcomes along multiple axes of inequality (27). The 

disparities observed in model performance are the same as 

those of the disparities in housing, employment, 

education, and care access. The injustices, by definition, 

are carried over into AI systems that are trained on real-

world data. Consequently, prediction models of sepsis may 

end up silently reinforcing the same systemic issues that 

the solution being sought was intended to cure. 

These results raise awkward, yet needed, questions 

concerning the values of the digital health technologies. 

Whose statistics are used as a base? On whose health are 

training sets marginalized? The fact that one pattern of 

illness is valued more highly than another means that an 

algorithm is making some form of value judgment, whether 

intentional or not. The implicit biases that are hidden in 

models are seldom discussed and can be life or death 

matters. It echoes the necessity of further deliberations 

not only about fairness, but about how algorithms identify, 

quantify, and, lastly, define the state of the so-called good 

care. 

The figure below presents key societal challenges in 

implementing healthcare AI. These challenges include 

Limited access to technology, Cultural and linguistic 

diversity, Data bias and representation, Limited literacy 

and digital literacy, Privacy and trust concerns, 

Infrastructure challenges, Healthcare disparities, and 

Ethical and regulatory considerations. These factors must 

be addressed to ensure equitable AI solutions in 

healthcare. 
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Figure 8: Ethical and social issues related to AI in healthcare# 

8.4 Institutional Mandates 

It is not the only task of developers or researchers to 

prevent and correct the AI bias. When health institutions 

decide to deploy AI models, they need to consider the 

clinical and ethical consequences. This is not limited to 

choosing tools that pass the accuracy calibration 

standards, but also assesses accuracy in determining 

whether they are safe and unbiased in subgroups. The new 

accountability starts at the procurement stage, proceeds 

into the training and implementation, and ends with the 

follow-up of patients. 

Health systems and hospitals can be subject to challenges 

that compel them to be able to afford greater efficiencies, 

lower expenses, and larger innovations. Although AI might 

seem to promise solutions across all of these areas, the 

cost-cutting measures in staff vetting and supervision are 

going to cause major risk. Fairness audits should be part of 

the quality assurance of AI adoption in institutions. Similar 

to infection control or medication safety, which are 

integrated into the working process, bias detection also 

should be regarded as an essential component of clinical 

safety. Furthermore, it is highly important that within the 

institution, there is openness among administrators, 

clinicians, and patients (17). When a model issues a high-

stakes recommendation, it is important to remove 

confusion on how the model functions, its limits, and what 

efforts are underway to address equality. Without carrying 

out these roles, chances are high that the technology will 

bring greater harm than benefits, especially among people 

who have already encountered barriers to care. 

9. Recommendations for Future Research 

Since its growing role in healthcare, the questions of 

fairness and safety of artificial intelligence have to be 

superseded by research priorities (16). The results of this 

audit show that the disparities in race and gender affect 

not only clinical outcomes but also in the instruments that 

are aimed to improve the situation. The best way to 

address these gaps is a more future-oriented research 

agenda that is no longer focused on merely increasing 

accuracy. Two fields especially need to be done connected 

to this frontier: intersectional analysis of biases and 

prospective auditing inside clinical systems. 

9.1 Intersectional Bias Analysis 

The biggest unaddressed issue in current AI research is the 

absence of effective intersectional bias analysis (2). Most 

fairness assessments focus on comparing either race or 

gender separately on very top-down comparisons, such as 

women and men patients or Black and White patients. 

Although these revelations are valuable, they lack the 

depth of a real-world identity. The individual demographic 

characteristic does not determine a patient. A Black 

woman with chronic illnesses, a Hispanic older man in a 

rural population, a non-binary Asian with little access to 
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care- each one encounters healthcare differently, and their 

data patterns will confirm how different each one is. 

Existing models and fairness metrics are not usually 

configured to identify the bias at these intersections. This 

leads to smaller subgroups, which might have 

compounded disadvantages going unexplored. The 

research effort should be aimed at creating an algorithm 

and audit framework that can assess the issue of fairness 

on several different axes simultaneously without 

needlessly compromising statistical power and/or 

interpretability. These considerations incorporate novel 

statistical techniques to estimate subgroup fairness, data 

sampling schemes that consciously increase the effects of 

intersectionality, and clinical trial design that integrates the 

ideas of intersectional patients at the center of the 

research. 

The intersectional analysis also presents a more 

comprehensive view of the health inequities because it 

permits the investigator to see how various types of 

disadvantages interact and interconnect. To be able to 

build tools that are not neutral on the outcomes of the 

majority of patients, it is essential to learn to represent this 

complexity. The image below highlights the Guiding 

Principles of Intersectionality-Based Policy Analysis, which 

include key aspects such as Equity, Social Justice, Diverse 

Knowledge, Power, Reflexivity, Time and Space, 

Intersecting Categories, and Multi-Level Analysis. These 

principles are vital for addressing complex, multi-

dimensional biases in healthcare, ensuring a more inclusive 

approach to policy and AI implementation. 

 

 

Figure 9: An intersectionality-based policy analysis framework 

9.2 Prospective Audits built into EHR systems  

Besides methodological innovation, there is also a need to 

have prospective audits embedded in electronic health 

record (EHR) systems. The majority of existing assessments 

of bias are performed post hoc, and it is after a model has 

been trained, validated, and maybe already deployed. This 

is beneficial, but does not take equal advantage of learning 

and adapting in real time. Models implemented in a clinical 

setting where patients change and systems workflows 

develop over time require regular re-evaluation, as they 

need to be ensured of fairness and effectiveness. An 

alternative to prospective auditing is a dynamic one. 

Healthcare facilities can monitor the performance of their 

AI models in terms of their fairness across subgroups 

directly in the EHR systems. Their systems would be 

configured to allow them to know when a model begins to 

perform significantly worse in one subset or when a trend 

toward misclassification occurs. What would be effective 

would be to incorporate these alerts into clinical quality 
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dashboards that staff already use. As such, fairness 

becomes an active element of routine checks, say as closely 

as infection rates or adverse drug events. 

Implementation of the prospective audits would also foster 

a culture of transparency and accountability (1). When 

monitoring fairness is a live component of healthcare 

delivery, it changes the conversation to focus on 

preventing rather than acting on correction. This poses a 

new challenge to the researcher, a challenge that is not 

new, though, in that methods addressing it are emerging, 

techniques that require thinking beyond the development 

of models, but also the design of systems that have to be 

built to bring them to the clinical environment. 

Focusing on patient-centered research, future studies 

should examine the possibility of patients participating in 

the establishment of fairness benchmarks themselves. 

Concepts such as equal sensitivity or demographic parity 

are traditional ways of measuring only a part of what is 

happening. Lived experience data, community 

engagement, and patient-reported outcomes are valuable 

to the meaningful length of the usage of AI tools as it 

pertains to equity in care. Overall, the future of clinical AI 

fairness is in greater study and understanding, as well as 

active evaluation and monitoring at a system level. It is 

possible to change the invisibility of disparities through 

intersectional bias analysis. The prospective audits will be 

able to make sure that fairness is not just an aim but a 

process. All of this in combination will create a more 

intelligent and not just intelligent healthcare AI ecosystem. 

10. Conclusion 

Auditing of sepsis prediction models poses a grim, but 

much-needed reality that not all patients are equally 

served by the technical sophistication linked with many AI 

tools deployed in healthcare today. The results, which 

were obtained in the course of conducting this study, point 

to the manifestation of racial and gender differences in 

terms of models performing. With the data disaggregated, 

it can be seen that the predictions are less accurate, the 

false negative rates are higher, and the clinical responses 

are slower among Black patients, Hispanic patients, 

women, and other underrepresented populations. Such 

inequalities do not exist by chance, nor are they peculiar to 

this or that period, but are products of underlying patterns 

in the data and construction of the models themselves. 

This seemingly optimistic algorithm, designed to be by all 

means impartial, is, in reality, a replica of historical and 

structural biases within the medical field. 

This paper points out that inequity related to AI in 

clinics is not unavoidable. There are mitigation strategies 

that can mitigate such concerns, and when used 

responsibly, these strategies can help make AI systems 

more just as well as effective. The interventions of 

rebalancing training datasets, using fairness-aware training 

constraints, recalibrating decision thresholds, and 

enhancing transparency have demonstrated the possibility 

to mitigate harm and decrease performance gaps. More 

than technical improvement, such tools are a significant 

step towards health equity. With deliberate focus aimed at 

fairness during development and implementation, AI can 

contribute to superior results among all groups of patients, 

not the disparities that it would help address. 

It cannot all be put on the developers or data scientists to 

fix these inequities. Healthcare organizations need to 

understand that the concept of fairness in AI is not a 

hypothetical or secondary concern, but a clinical safety 

concern. Such a realization requires an operational and 

cultural change. Institutions should make regular audits of 

bias in their assessment procedures, report on 

performance by demographic subgroups, and establish 

mechanisms for monitoring disparities continuously. This 

higher form of accountability is less absolute, without 

which even the best-designed AI systems threaten to 

exacerbate the human-made disparities in access, 

treatment, and outcomes. Inclusive AI needs to be created 

with the data itself as the starting point. The data collection 

procedures should be deliberately representative of the 

marginalized communities, and their identities must not 

only be included in them but also represented fairly. 

Additionally, the similarities amongst the communities that 

have been impacted by incongruity must participate in the 

design of the requirements against which equity is 

measured. Technical prowess is one thing, but ethical 

honesty and experienced realization must go with it. It is 

important to construct clinical AI systems end-to-end with 

equity in mind, including the data collection point and 

where a decision about the patient is based on a 

prediction. 

The fundamental question that is entwined in this issue is 

whether artificial intelligence in its current form and its 

implementation phase can be trusted to take care of all 

people in a similar way as they would like to be taken care 

of. The results of this audit indicate that the answer is still 

no at the moment. They even hint at a future where that 
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response may be different. Fairness is not a long-run or 

theoretical cosmos. It is a quantifiable, doable, and 

ethically imperative aspect of any Artificial Intelligence 

being utilized in the field of medicine. Such systems will be 

required not merely to predict what will occur, but also to 

indicate a value of dignity, justice, and compassion. 

Achieving this vision will not be an easy thing. It involves 

long-term dedication, institutional audacity, and the ability 

to fight the assumptions incorporated in technology. 

However, the stakes are as high as they can be. To a Black 

mother giving birth, a Hispanic grandfather in intensive 

care, or a non-binary teen going to an urgent care facility, 

the use of AI has to do more than be efficient; it must be 

equitable. Focusing on the principle of fairness at all levels 

of the AI lifecycle provides the healthcare sector with the 

opportunity to bring it closer to the moment when 

technology will be not only smart, but also fair. 
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