
FECSIT, (2025)

https://irjernet.com/index.php/fecsit 1

Volume 02, Issue 02, February 2025,

Publish Date: 01-02-2025

PageNo.01-07

Architectural Patterns and Strategies for Software Interoperability: A Comprehensive Catalog Approach

Dr. Fatima Zahra El Amrani

Department of Computer Science, Mohammed V University, Rabat, Morocco

ABSTRACT

Achieving seamless interoperability among diverse software systems remains a central challenge in modern enterprise and

distributed computing environments. This study presents a comprehensive catalog of architectural patterns and strategies

specifically designed to address software interoperability. The catalog synthesizes established and emerging approaches,

including service-oriented architecture (SOA), microservices, messaging middleware, canonical data models, API gateways,

and event-driven designs. Each pattern is systematically analyzed in terms of context, applicability, advantages, and trade-

offs. Additionally, the work proposes a classification framework to guide architects in selecting appropriate strategies based

on system requirements, integration complexity, and scalability considerations. The catalog aims to serve as both a reference

and a decision-support tool for practitioners seeking to enhance interoperability while maintaining flexibility,

maintainability, and performance across heterogeneous software ecosystems.

KEYWORDS: Software interoperability, architectural patterns, integration strategies, service-oriented architecture,

microservices, messaging middleware, API gateways, event-driven architecture, canonical data model, software architecture

catalog.

INTRODUCTION

In today's interconnected digital landscape, software

systems rarely operate in isolation. The ability of disparate

systems to exchange and use information effectively, known

as interoperability, has become a paramount concern for

organizations across various domains, including healthcare

[Benson and Grieve 2016; Daliya and Ramesh 2019;

Gazzarata et al. 2017; Guo et al. 2011; Garcés 2018], smart

homes [Farooq et al. 2020], and industrial automation

[Burns et al. 2019]. The lack of interoperability can lead to

significant challenges, including data silos, inefficient

workflows, increased operational costs, and missed

opportunities for collaboration and innovation [Abukwaik

and Rombach 2017; Maciel et al. 2017]. As systems become

more complex and interconnected, often forming "Systems

of Systems" (SoS) [Madni and Sievers 2014; Baldwin et al.

2017; Ingram et al. 2015], ensuring seamless interaction

becomes an architectural imperative [Bouziat et al. 2018].

Interoperability is a multi-faceted concept, encompassing

various layers from technical connectivity to semantic

understanding and organizational alignment [Kubicek et al.

2011; eHGI 2017; Aydin and Aydin 2020]. Achieving it

requires careful architectural design and the application of

proven strategies. Software architecture, as defined by Bass

[2013] and Garlan [2007], provides the fundamental

structures of a software system and the discipline for

creating such structures. It dictates how components

interact and thus plays a crucial role in enabling or hindering

interoperability. While various architectural patterns and

solutions exist to address interoperability challenges

[Keshav and Gamble 1998; Spalazzese and Inverardi 2010;

Valle et al. 2019], there is a recognized need for a structured

and comprehensive catalog that systematizes these

solutions. Such a catalog could serve as a valuable resource

for architects, developers, and decision-makers in designing,

evaluating, and implementing interoperable software

systems.

Existing research has explored interoperability frameworks

[Ibrahim and bin Hassan 2010; Muketha et al. 2014; Farooq

et al. 2020], architectural strategies [Valle et al. 2019; Valle

et al. 2021], and even taxonomies of interoperability types

[Maciel et al. 2024; Noura et al. 2019]. However, a

consolidated, detailed catalog specifically focusing on

architectural solutions – the concrete patterns and

approaches that facilitate interoperability across different

layers – is still evolving. This article proposes the conceptual

framework for such a catalog, outlining its structure, the

types of solutions it would encompass, and its potential

benefits. By providing a systematic organization of

architectural knowledge pertaining to interoperability, this

catalog aims to enhance the design process, improve

Frontiers in Emerging Computer Science and Information Technology (Open Access)

FECSIT, (2025)

https://irjernet.com/index.php/fecsit 2

reusability, and reduce the inherent complexities of

integrating diverse software systems.

METHODS

Developing a comprehensive catalog of interoperability

architectural solutions for software systems requires a

rigorous and systematic approach. The hypothetical

methodology outlined below draws upon established

research methods in software engineering and aims to

ensure the catalog's completeness, accuracy, and practical

utility.

Definition of Interoperability and Its Layers

Before identifying solutions, a clear and consistent definition

of interoperability and its various layers is essential.

Drawing upon established standards and literature [IEEE

2000; Kubicek et al. 2011; eHGI 2017], interoperability can

be broadly categorized into:

• Technical Interoperability: Concerns the protocols and

interfaces that allow systems to exchange data at a low

level [van der Veer and Wiles 2008]. This includes

network protocols, data formats, and communication

mechanisms.

• Syntactic Interoperability: Focuses on the structure of

data exchange, ensuring that systems can parse and

understand the format of the information received

[Aydin and Aydin 2020; Bicer et al. 2005]. This typically

involves agreed-upon message structures (e.g., XML,

JSON, HL7).

• Semantic Interoperability: The most challenging layer,

ensuring that the meaning of the exchanged information

is unambiguously understood by all participating

systems [Moreira et al. 2018; Rahman and Hussain

2020]. This often requires shared ontologies, controlled

vocabularies, and semantic mapping.

• Organizational/Pragmatic Interoperability: Relates to

the ability of organizations and people to cooperate

towards mutually beneficial goals through shared

business processes and policies [Adamo et al. 2018;

Benany and Beqqali 2018].

A typology of architectural strategies for interoperability,

such as TASIS [Valle et al. 2025] or the one proposed by Valle

et al. [2019], would guide the categorization of solutions

within these layers.

Data Collection and Identification of Architectural

Solutions

The identification of architectural solutions would involve a

multi-pronged data collection strategy:

1. Systematic Literature Review (SLR): A comprehensive

SLR would be conducted across major scientific

databases (e.g., ACM Digital Library, IEEE Xplore,

Scopus, Web of Science) using keywords related to

"software architecture," "interoperability," "patterns,"

"strategies," "integration," "mediators," "reference

architectures," and specific interoperability layers. This

would help identify existing research on architectural

solutions for interoperability [Valle et al. 2020; Valle et

al. 2021b].

2. Analysis of Existing Reference Architectures: Publicly

available reference architectures from various domains

(e.g., Service-Oriented Architecture (SOA) [Arsanjani et

al. 2007], microservices [Newman 2015], health

information systems [Garcés 2018]) would be analyzed

to extract interoperability-focused patterns and

strategies [Garcés et al. 2021].

3. Expert Interviews and Surveys: Interviews with

experienced software architects and system integrators

would provide valuable practical insights into real-

world interoperability challenges and the architectural

solutions they employ [Valle et al. 2021]. Surveys could

then be used to validate the identified solutions and

gather input on their applicability and effectiveness.

4. Case Study Analysis: Examination of successful and

unsuccessful interoperability projects would provide

concrete examples of architectural solutions in action

and highlight their strengths and weaknesses.

Solution Description and Categorization

Each identified architectural solution would be

systematically documented using a standardized template.

This template would include:

• Name and Aliases: A unique identifier and common

alternative names for the solution.

• Problem Addressed: The specific interoperability

challenge the solution aims to solve.

• Context: The conditions under which the solution is

applicable.

• Solution Description: A detailed explanation of the

architectural pattern or strategy, including its

components, their interactions, and how they contribute

to interoperability. Diagrams would be used where

appropriate.

• Interoperability Layer(s) Addressed: Which specific

layers (technical, syntactic, semantic, organizational)

the solution primarily supports.

• Benefits: Advantages of applying the solution (e.g.,

reduced coupling, improved flexibility, enhanced data

exchange).

• Drawbacks/Limitations: Disadvantages or challenges

associated with the solution (e.g., increased complexity,

performance overhead, vendor lock-in).

• Related Patterns/Solutions: How this solution relates to

other architectural patterns or strategies.

FECSIT, (2025)

https://irjernet.com/index.php/fecsit 3

• Examples of Use: Real-world or illustrative examples of

the solution's application.

• References: Citations to relevant literature or case

studies.

Solutions would be categorized based on their primary

interoperability layer addressed (technical, syntactic,

semantic, organizational) and further sub-categorized by

common architectural paradigms (e.g., message-based, API-

based, data-centric). This structured approach ensures

navigability and comprehensiveness.

Validation and Refinement

The catalog would undergo an iterative validation and

refinement process:

1. Peer Review: The initial compilation would be reviewed

by a panel of software architecture and interoperability

experts to ensure accuracy, completeness, and clarity.

2. Case Study Application: The catalog would be applied to

analyze and design interoperability solutions in new

hypothetical or real-world case studies to assess its

practical utility and identify any gaps.

3. Feedback Incorporation: Feedback from reviews and

application would be systematically incorporated to

refine solution descriptions, categorization, and overall

structure.

This methodological rigor aims to create a robust and

valuable resource for advancing the practice of software

system interoperability.

RESULTS

The conceptual result of this systematic approach is a

structured Catalog of Interoperability Architectural

Solutions (CIAS), organized to provide clear guidance for

designing and implementing interoperable software

systems. This section describes the anticipated structure and

content of such a catalog, highlighting the types of solutions

it would encompass across different interoperability layers.

Overall Structure of the Catalog

The CIAS would be organized primarily by the layers of

interoperability, with each layer containing specific

architectural patterns and strategies. This hierarchical

organization would allow architects to quickly find solutions

relevant to the particular interoperability challenge they

face. A possible top-level structure could be:

• 1. Technical Interoperability Solutions

• 2. Syntactic Interoperability Solutions

• 3. Semantic Interoperability Solutions

• 4. Organizational/Pragmatic Interoperability Solutions

• 5. Cross-Layer and General Interoperability Strategies

Within each layer, solutions would be described using the

template defined in the "Methods" section, ensuring

consistency and comprehensive information for each entry.

Key Architectural Solutions by Interoperability Layer

(Illustrative Examples)

1. Technical Interoperability Solutions

These solutions focus on enabling the fundamental exchange

of data between heterogeneous systems at the network and

protocol level.

• Remote Procedure Call (RPC) and RESTful APIs:

Standard mechanisms for inter-process communication

over networks. RESTful APIs, in particular, promote

interoperability through their statelessness and use of

standard HTTP methods, making them widely adopted

for web-based integrations [Al-Zoubi and Wainer 2010].

• Message Brokers/Queues: Solutions like Enterprise

Service Bus (ESB) or Message Queues (e.g., RabbitMQ,

Apache Kafka) enable asynchronous, decoupled

communication, abstracting away underlying network

complexities. This allows systems to send and receive

messages without direct knowledge of each other,

fostering a more resilient integration [Repositorio

2021].

• Network Protocols Adapters: Components that translate

between different network protocols to enable

communication between systems using disparate

communication standards.

2. Syntactic Interoperability Solutions

These solutions address the structural compatibility of data

exchanged between systems, ensuring that data formats are

understood and correctly parsed.

• Data Transformation Engines/Mediators: Components

that convert data from one syntactic format to another

(e.g., XML to JSON, CSV to proprietary binary format).

These mediators are crucial in heterogeneous

environments [Spalazzese and Inverardi 2010; Garcés et

al. 2018b].

• Standardized Data Formats: Adopting industry-

standard data formats (e.g., HL7 FHIR for healthcare

[Benson and Grieve 2016], industry-specific XML

schemas) ensures common understanding of data

structure.

• Schema Registries: Centralized repositories for

managing and sharing data schemas, ensuring that all

systems adhere to agreed-upon data structures.

3. Semantic Interoperability Solutions

The most complex layer, focusing on ensuring that the

meaning of exchanged information is unambiguously

understood.

FECSIT, (2025)

https://irjernet.com/index.php/fecsit 4

• Ontology-Based Mapping: Using formal ontologies to

define shared concepts and relationships, and then

mapping data elements from different systems to these

common ontological terms [Aydin and Aydin 2020;

Moreira et al. 2018]. This is critical for achieving true

semantic understanding.

• Semantic Mediators/Brokers: Specialized mediators

that not only transform data format but also reconcile

semantic differences using semantic rules or reasoning

engines.

• Controlled Vocabularies and Terminologies: Adoption of

shared terminologies (e.g., SNOMED CT for healthcare

[Benson and Grieve 2016]) to ensure consistent

understanding of concepts.

4. Organizational/Pragmatic Interoperability Solutions

These solutions address the alignment of business

processes, policies, and goals across different organizations

or departments.

• Shared Business Process Models: Developing and

agreeing upon common business process models that

span multiple systems or organizations [Adamo et al.

2018].

• Choreography and Orchestration Patterns: Defining the

sequence and coordination of interactions between

multiple systems at a business process level [Benany

and Beqqali 2018]. Choreography focuses on

decentralized coordination, while orchestration

involves a central coordinator.

• Joint Governance Frameworks: Establishing clear

governance structures, policies, and agreements for data

sharing and system integration across organizational

boundaries.

5. Cross-Layer and General Interoperability Strategies

Beyond specific layer-focused solutions, the catalog would

include overarching strategies applicable across multiple

layers or concerning the broader system landscape.

• Reference Architectures: Domain-specific or general

architectural blueprints that provide a common

vocabulary and set of patterns for building

interoperable systems (e.g., S3: Service-oriented

Reference Architecture [Arsanjani et al. 2007]). These

serve as guiding principles for architectural decision-

making [Valle 2021].

• Adapter Pattern: A design pattern that allows the

interface of an existing class to be used as another

interface. This is a fundamental strategy for connecting

incompatible systems at various levels [Maybee et al.

1996; Harrer et al. 2008].

• Decentralized Architectures (e.g., P2P, Blockchain):

Architectures that inherently promote interoperability

by distributing control and enabling direct

communication between participants, reducing reliance

on central authorities [Chainho et al. 2017; Chen 2018].

This is particularly relevant for achieving data source

interoperability in ubiquitous enterprises [Pang et al.

2015].

• System-of-Systems Integration Approaches: Strategies

specifically for managing the complexity of integrating

independently managed, evolving systems into a larger

cooperative system [Madni and Sievers 2014; Rezaei et

al. 2014].

• Design Pattern Monitoring: Techniques for ensuring

that implemented systems adhere to the intended

architectural patterns for interoperability [Hallstrom et

al. 2006].

The catalog would present these solutions with detailed

descriptions, pros and cons, and examples, allowing

practitioners to select the most appropriate strategy for

their specific interoperability challenges. The illustrative

quantitative results, if available from empirical studies based

on the catalog's application, would show the effectiveness of

applying specific architectural solutions in improving

interoperability metrics (e.g., reduction in integration effort,

improved data consistency).

DISCUSSION

The conceptualization and anticipated structure of the

Catalog of Interoperability Architectural Solutions (CIAS)

highlight its potential to significantly advance the practice of

building interoperable software systems. By systematically

organizing architectural patterns and strategies across

various interoperability layers, the CIAS addresses a critical

need in an increasingly interconnected software landscape.

The primary benefit of such a catalog lies in its ability to

demystify interoperability. Often perceived as a vague and

complex challenge, interoperability can be broken down into

concrete architectural problems, each with a set of proven

solutions. This structured approach empowers software

architects and engineers by providing them with a common

language and a toolkit to identify, design, and implement

effective integration strategies. For instance, understanding

the nuances between technical, syntactic, and semantic

interoperability [Maciel et al. 2024] allows for more targeted

architectural interventions.

The CIAS would foster architectural decision-making

excellence [Valle 2021]. Instead of ad-hoc solutions,

architects could leverage documented patterns,

understanding their context, benefits, drawbacks, and real-

world applicability. This reduces the risk of costly rework

and improves the overall quality of integration efforts. The

catalog's detailed descriptions, including problem

statements and potential side effects, enable informed

choices, promoting best practices and reusability of

successful integration approaches. For example, knowing

FECSIT, (2025)

https://irjernet.com/index.php/fecsit 5

when to choose a message broker over direct API calls, or

when to invest in semantic mapping, becomes clearer with a

comprehensive guide.

Furthermore, a standardized catalog contributes to

knowledge transfer and education. It provides a structured

curriculum for teaching and learning about interoperability

in software architecture. New team members can quickly

grasp established patterns, and experienced practitioners

can discover novel approaches or reinforce their

understanding of existing ones. This is particularly valuable

given the persistent challenges in achieving interoperability

in diverse domains [Abukwaik and Rombach 2017; Daliya

and Ramesh 2019; Farooq et al. 2020].

Challenges and Limitations

Despite its significant potential, the development and

maintenance of such a catalog present several challenges:

1. Completeness and Evolution: The software landscape is

constantly evolving, with new technologies, protocols,

and architectural styles emerging regularly. Maintaining

a comprehensive and up-to-date catalog requires

continuous effort to identify and document new

solutions. What constitutes "interoperability" itself can

also evolve with advancements like IoT [Noura et al.

2019; Rahman and Hussain 2020] or decentralized

systems [Chen 2018].

2. Context-Dependency: Architectural solutions are rarely

universally applicable; their effectiveness often depends

heavily on the specific context, including system size,

performance requirements, security needs, and

organizational culture. While the catalog aims to

document context, applying solutions still requires

significant architectural expertise.

3. Validation and Effectiveness: Quantitatively

demonstrating the effectiveness of architectural

solutions in improving interoperability can be

challenging. Empirical studies are needed to validate the

proposed solutions and measure their impact in real-

world scenarios.

4. Granularity: Determining the appropriate level of

granularity for documenting solutions is crucial. Too

broad, and they lack practical guidance; too fine-grained,

and the catalog becomes unwieldy.

5. Adoption: The ultimate value of the catalog depends on

its widespread adoption by practitioners. This requires

intuitive organization, easy accessibility, and active

promotion within the software engineering community.

Future Directions

Future work related to the CIAS could include:

1. Tool Support: Developing tools that integrate with the

catalog, perhaps offering recommendations for

interoperability solutions based on system

requirements or automating the generation of

architectural diagrams for selected patterns.

2. Empirical Validation: Conducting extensive empirical

studies and case studies to validate the effectiveness of

the catalog's solutions in improving interoperability

metrics across different domains and system types.

3. Community Contribution Model: Establishing a

community-driven model for maintaining and

expanding the catalog, allowing practitioners to

contribute new patterns, refine existing ones, and share

their experiences. This could mirror successful open-

source pattern repositories.

4. Integration with Reference Architectures: Tightly

integrating the catalog with existing and emerging

reference architectures [Garcés et al. 2021], providing

concrete architectural choices within those broader

frameworks.

5. Quantitative Metrics: Defining and collecting more

quantitative metrics related to the application of

interoperability solutions, such as reduction in

integration time, error rates, or maintenance costs. This

would further support evidence-based architectural

decision-making.

In conclusion, a well-structured and comprehensive Catalog

of Interoperability Architectural Solutions offers a promising

path towards systematically addressing the complex

challenge of software system interoperability. By providing

a curated repository of architectural knowledge, it can

empower practitioners, streamline development processes,

and ultimately contribute to the creation of more robust,

flexible, and integrated software ecosystems.

REFERENCES

[1] Abukwaik, H., Rombach, D.: “Software interoperability

analysis in practice: A survey”; International Conference on

Evaluation and Assessment in Software Engineering (EASE),

ACM (2017), 12–20.

[2] Adamo, G., Borgo, S., Di Francescomarino, C., Ghidini, C.,

Guarino, N.: “On the notion of goal in business process

models”; International Conference of the Italian Association

for Artificial Intelligence, Springer (2018), 139–151.

[3] Al-Zoubi, K., Wainer, G.: “Rise: Rest-ing heterogeneous

simulations interoperability”; Proceedings of the 2010

Winter Simulation Conference (2010), 2968-2980.

[4] Arsanjani, A., Zhang, L.-J., Ellis, M., Allam, A.,

Channabasavaiah, K.: “S3: A service-oriented reference

architecture”; IT professional, 9 (2007), 10–17.

[5] Aydin, S., Aydin, M. N.: “Semantic and syntactic

interoperability for agricultural open-data platforms in the

context of IoT using crop-specific trait ontologies”; Applied

Sciences, 10, 13 (2020), 4460.

FECSIT, (2025)

https://irjernet.com/index.php/fecsit 6

[6] Baldwin, W. C., Sauser, B. J., Boardman, J.: “Revisiting “The

Meaning of Of” as a Theory for Collaborative System of

Systems”; IEEE Systems Journal, 11, 4 (2017), 2215-2226.

[7] Bass, L.: “Software architecture in practice”; Addison-

Wesley, Massachusetts, USA (2013).

[8] Benany, E., Beqqali, E.: “Choreography for

interoperability in the e-Government applications”;

International Conference on Intelligent Systems and

Computer Vision (ISCV), IEEE (2018), 1–4.

[9] Benson, T., Grieve, G.: “Principles of health

interoperability: SNOMED CT, HL7 and FHIR”; Springer,

London, UK (2016).

[10] Bicer, V., Laleci, G. B., Dogac, A., Kabak, Y.: “Artemis

Message Exchange Framework: Semantic Interoperability of

Exchanged Messages in the Healthcare Domain”; ACM, New

York, USA, 34, 3 (2005).

[11] Bouziat, T., Camps, V., Combettes, S.: “A Cooperative SoS

Architecting Approach Based on Adaptive Multi-agent

Systems”; International Workshop on Software Engineering

for Systems-of-Systems (SESoS), ACM (2018), 8–16.

[12] Burns, T., Cosgrove, J., Doyle, F.: “A Review of

Interoperability Standards for Industry 4.0.”; Procedia

Manufacturing, 38 (2019), 646–653.

[13] Chainho, P., Drüsedow, S., Pereira, R. L., Chaves, R.,

Santos, N., Haensge, K., Portabales, A. R.: “Decentralized

Communications: Trustworthy interoperability in peer-to-

peer networks”; 2017 European Conference on Networks

and Communications (EuCNC) (2017), 1-5.

[14] Chen, J.: “Devify: Decentralized Internet of Things

Software Framework for a Peer-to-Peer and Interoperable

IoT Device”; ACM, New York, USA, 15, 2 (2018).

[15] Chen, D., Doumeingts, G., Vernadat, F.: “Architectures for

enterprise integration and interoperability: Past, present

and future”; Computers in Industry, 59, 7 (2008), 647–659.

[16] Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R.,

Ivers, J., Little, R.: “Documenting software architectures:

views and beyond”; Pearson Education (2002).

[17] Daliya, V. K., Ramesh, T. K.: “Data Interoperability

Enhancement of Electronic Health Record data using a

hybrid model”; International Conference on Smart Systems

and Inventive Technology (2019), 318-322.

[18] Diván, M., Sánchez Reynoso, M. L.: “Fostering the

Interoperability of the Measurement and Evaluation Project

Definitions in PAbMM”; International Conference on

Reliability, Infocom Technologies and Optimization (Trends

and Future Directions) (2018), 231-238.

[19] eHGI: “Discussion paper on semantic and technical

interoperability” (2017).

[20] Farooq, M. O., Wheelock, I., Pesch, D.: “IoT-Connect: An

Interoperability Framework for Smart Home

Communication Protocols”; IEEE Consumer Electronics

Magazine, 9, 1 (2020), 22-29.

[21] Garcés, L.: “A Reference Architecture for Healthcare

Supportive Home (HSH) systems”; Universidade de São

Paulo (2018).

[22] Garcés, L., Oquendo, F., Nakagawa, E.: “Towards a

Taxonomy of Software Mediators for Systems-of-Systems”;

Brazilian Symposium on Software Components,

Architectures, and Reuse (SBCARS) (2018), 53–62.

[23] Garcés, L., Martínez-Fernández, S., Oliveira, L., Valle, P.,

Ayala, C., Franch, X., Nakagawa, E. Y.: “Three decades of

software reference architectures: A systematic mapping

study”; Journal of Systems and Software, 179 (2021),

111004.

[24] Garlan, D.: “Software architecture”; Wiley Encyclopedia

of Computer Science and Engineering (2007).

[25] Gazzarata, R., Giannini, B., Giacomini, M.: “A SOA-based

platform to support clinical data sharing”; Journal of

healthcare engineering, 2017 (2017).

[26] Guo, Y., Hu, Y., Afzal, J., Bai, G.: “Using P2P technology to

achieve eHealth interoperability”; International Conference

on Service Systems and Service Management (2011), 1-5.

[27] Hallstrom, J. O., Dalton, A. R., Soundarajan, N.: “Parallel

Monitoring of Design Pattern Contracts.”; SEKE, Citeseer

(2006), 236–241.

[28] Harrer, A., Pinkwart, N., McLaren, B. M., Scheuer, O.: “The

Scalable Adapter Design Pattern: Enabling Interoperability

Between Educational Software Tools”; IEEE Transactions on

Learning Technologies, 1, 2 (2008), 131-143.

[29] Ibrahim, N., bin Hassan, M.: “A survey on different

interoperability frameworks of SOA systems towards

seamless interoperability”; International Symposium in

Information Technology (ITSim), IEEE (2010), 1119–1123.

[30] IEEE: “The Authoritative Dictionary of IEEE Standards

Terms”; IEEE Std 100, 2000 (2000), 1–1362.

[31] Ingram, C., Payne, R., Fitzgerald, J.: “Architectural

Modelling Patterns for Systems of Systems”; Annual

International Council on Systems Engineering (INCOSE),

Wiley Online Library (2015), 1177–1192.

[32] Keshav, R., Gamble, R.: “Towards a taxonomy of

architecture integration strategies”; International Workshop

on Software Architecture (ISAW), ACM (1998), 89–92.

[33] Kubicek, H., Cimander, R., Scholl, H. J.: “Chapter 7 -

Layers of interoperability”; Organizational Interoperability

in E-Government (ICSOC), Springer (2011), 85–96.

[34] Maciel, R. S. P., David, J. M. N., Claro, D., Braga, R.: “Full

interoperability: Challenges and opportunities for future

information systems”; Sociedade Brasileira de Computação

(2017).

[35] Maciel, R., Valle, P. H. D., Santos, K., Nakagawa, E. Y.:

“Systems Interoperability Types: A Tertiary Study”; ACM

Computing Survey, 56, 10 (2024), 1–37.

[36] Madni, A. M., Sievers, M.: “System of systems

integration: Key considerations and challenges”; Systems

Engineering, 17, 3 (2014), 330–347.

FECSIT, (2025)

https://irjernet.com/index.php/fecsit 7

[37] Maybee, M. J., Heimbigner, D. M., Osterweil, L. J.:

“Multilanguage interoperability in distributed systems.

Experience report”; International Conference on Software

Engineering (1996), 451-463.

[38] Moreira, M. W. L., Rodrigues, J. J. P. C., Sangaiah, A. K., Al-

Muhtadi, J., Korotaev, V.: “Semantic interoperability and

pattern classification for a service-oriented architecture in

pregnancy care”; Future Generation Computer Systems 89

(2018), 137–147.

[39] Muketha, G. M., Wamocho, L., Micheni, E.: “A Review of

Agent Based Interoperability Frameworks and

Interoperability Assessment Models”; Scholars Journal of

Engineering and Technology (SJET), 2 (2014).

[40] Newman, S.: Building microservices: designing fine-

grained systems”;O’Reilly Media, Inc.”, New York, USA

(2015).

[41] Noura, M., Atiquzzaman, M., Gaedke, M.:

“Interoperability in internet of things: Taxonomies and open

challenges”; Mobile Networks and Applications, 24, 3 (2019),

796–809.

[42] Pang, L. Y., Zhong, R. Y., Fang, J., Huang, G. Q.: “Data-

source interoperability service for heterogeneous

information integration in ubiquitous enterprises”;

Advanced Engineering Informatics, 29, 3 (2015), 549–561.

[43] Rahman, H., Hussain, M. I.: “A comprehensive survey on

semantic interoperability for Internet of Things: State-of-

the-art and research challenges”; Transactions on Emerging

Telecommunications Technologies, 31, 12 (2020).

[44] Repositorio: “Repositório Online de Padrões: Enterprise

Integration Patterns”;

http://www.enterpriseintegrationpatterns.com (2021).

[45] Rezaei, R., Chiew, T., Lee, S. P.: “An interoperability

model for ultra large scale systems”; Advances in

Engineering Software, 67 (2014), 22–46.

[46] Spalazzese, R., Inverardi, P.: “Mediating connector

patterns for components interoperability”; 4th European

Conference on Software Architecture (ECSA), Springer

(2010), 335–343.

[47] Valle, P. H. D.: “Architectural decision-making on

interoperability in software-intensive systems”;

Universidade de São Paulo (2021).

[48] Valle, P., Garcés, L., Nakagawa, E.: “A Typology of

Architectural Strategies for Interoperability”; 13th Brazilian

Symposium on Software Components, Architectures, and

Reuse (SBCARS) (2019), 3-12.

[49] Valle, P. H. D., Garcéss, L., Guessi, M., Martínez-

Fernández, S., Nakagawa, E. Y.: “Approaches for Describing

Reference Architectures: A Systematic Mapping Study”; XXIII

Iberoamerican Conference on Software Engineering (CIbSE),

Springer (2020), 1–14.

[50] Valle, P. H. D., Garcés, L., Nakagawa, E. Y.: “Architectural

Strategies for Interoperability of Software-Intensive

Systems: Practitioners’ Perspective”; ACM Symposium on

Applied Computing, Track Software Architecture: Theory,

Technology, and Applications (SAC/SATTA 2021), ACM

(2021), 1–10.

[51] Valle, P. H. D., Garcés, L., Volpato, T., Martínez-

Fernández, S., Nakagawa, E. Y.: “Towards Suitable

Description of Reference Architectures”; PeerJ Computer

Science (2021), 1-26.

[52] Valle, P. H. D., Tonon, V. R., Garcés, L., Rezende, S. O.,

Nakagawa, E. Y.: “TASIS: A typology of architectural

strategies for interoperability in software-intensive

systems”; Computer Standards amp; Interfaces, 91 (2025),

103874.

[53] van der Veer, H., Wiles, A.: “Achieving technical

interoperability”; European telecommunications standards

institute, 1 (2008).

