
FECSIT, (2025)

https://irjernet.com/index.php/fecsit 1

Volume 02, Issue 01, January 2025,

Publish Date: 01-01-2025

PageNo.01-07

A Microservices-Driven Framework for Integrated Travel Data and Service Delivery

Prof. George Papadopoulos

Department of Computer Science, University of Cyprus, Nicosia, Cyprus

Prof. Andreas Antoniou

Department of Computer Science, University of Cyprus, Nicosia, Cyprus

ABSTRACT

The contemporary travel industry operates on a vast, intricate network of data sources, ranging from flight availability and

hotel bookings to car rentals and personalized itinerary preferences. Traditional monolithic architectural paradigms often

struggle to cope with the dynamic nature, immense scale, and diverse integration requirements of this sector, leading to

scalability bottlenecks, slow innovation cycles, and fragmented user experiences. This article proposes a novel

microservices-driven framework for seamless travel data integration and enhanced service delivery. By decomposing the

monolithic travel platform into a collection of independently deployable, loosely coupled, and specialized microservices, the

architecture aims to overcome the limitations of conventional systems. Each microservice is designed to manage specific

business capabilities (e.g., flight search, hotel booking, payment processing, user profiles), fostering agility, scalability, and

resilience. The framework emphasizes distributed data management, efficient inter-service communication, and cloud-

native deployment strategies to ensure high availability and responsiveness. We detail the architectural components, data

flow, and operational advantages, demonstrating how this approach can facilitate real-time data aggregation, enable

personalized travel experiences, and accelerate the development and deployment of new features, thereby revolutionizing

the landscape of online travel service provision.

KEYWORDS: Microservices architecture, integrated travel data, service delivery, travel platforms, API integration,

distributed systems, cloud computing, travel technology, scalable frameworks, real-time data processing.

INTRODUCTION

The global travel industry is a multifaceted and rapidly

evolving sector, characterized by its dynamic pricing, vast

inventory, complex reservation systems, and ever-

increasing demand for personalized services [13]. From

flight booking and hotel reservations to car rentals, tour

packages, and ancillary services, the digital travel ecosystem

relies heavily on robust and efficient information technology

infrastructure. Historically, many online travel agencies

(OTAs) and direct service providers have relied on

monolithic architectural designs, where all functionalities

are tightly coupled within a single, large application [3], [39].

While simple to develop initially, these monolithic systems

quickly become unwieldy as they scale, leading to significant

challenges in terms of scalability, maintainability, agility, and

resilience [6], [11], [14], [27].

The limitations of monolithic architectures in the travel

domain are manifold. Scaling a monolithic application often

means scaling the entire system, even if only a small

component is experiencing high load, leading to inefficient

resource utilization. Deploying new features or bug fixes

requires redeploying the entire application, resulting in

prolonged downtime and slow development cycles.

Furthermore, the tightly coupled nature of components

makes the system fragile; a failure in one part can cascade

and bring down the entire application, jeopardizing service

availability and customer satisfaction [5]. Integrating new

third-party APIs (e.g., for new airlines, hotels, or payment

gateways) or adopting new technologies becomes a complex

and time-consuming endeavor [27].

In response to these challenges, the microservices

architecture has emerged as a powerful paradigm for

building modern, scalable, and resilient software systems

[1], [3], [8], [11], [12], [14], [27]. Microservices promote the

decomposition of a large application into a collection of

small, independent services, each responsible for a specific

business capability, running in its own process, and

communicating via lightweight mechanisms, typically APIs

[1], [3]. This architectural style offers significant advantages,

Frontiers in Emerging Computer Science and Information Technology (Open Access)

FECSIT, (2025)

https://irjernet.com/index.php/fecsit 2

including enhanced scalability, improved fault isolation,

accelerated development cycles, and increased technological

flexibility [1], [3], [5], [12], [27]. Its principles are

particularly well-suited to complex, data-intensive, and

highly dynamic domains like the travel industry [9], [17],

[26], [28], [38].

The fragmented nature of travel data presents another

significant hurdle. Information about flights,

accommodations, pricing, and availability resides across

numerous disparate systems and providers. Effectively

integrating and aggregating this distributed travel data in

real-time, while simultaneously ensuring data consistency

and providing seamless service delivery, is crucial for

offering competitive and comprehensive travel solutions.

Traditional integration patterns in monolithic systems often

lead to complex, brittle dependencies and data silos [9].

This article proposes a novel architectural framework that

leverages the microservices paradigm to facilitate robust,

distributed travel data integration and advanced service

provision. Our primary objective is to detail an architectural

design that overcomes the limitations of monolithic systems

by enabling scalable data aggregation, enhancing service

responsiveness, and fostering agility in feature development

for the online travel domain. We hypothesize that a

microservices-driven approach will significantly improve

system performance, resilience, and adaptability, paving the

way for next-generation online travel platforms capable of

delivering highly personalized and real-time user

experiences.

The remainder of this paper is structured as follows: Section

2 outlines the methodology, detailing the proposed

microservices architecture, its key components, data

integration strategies, and the underlying technological

considerations. Section 3 discusses the expected results and

advantages of implementing such a framework. Section 4

provides a comprehensive discussion of the implications,

challenges, and future directions. Finally, Section 5

concludes the article.

METHODS

Architectural Overview: The Microservices Paradigm

for Travel

The proposed framework embraces the microservices

architectural style to address the complexities of travel data

integration and service provision. Instead of a single,

monolithic application, the online travel platform is

decomposed into a set of small, autonomous services, each

owning its specific business domain and data. This

decomposition follows the principle of "bounded contexts,"

ensuring that each service has a clear responsibility and

minimal dependencies on others [3]. The overall system

architecture is depicted conceptually in Figure 1.

(This would typically be an actual figure in an academic

paper, illustrating the flow: User Interface -> API Gateway ->

various independent Microservices (e.g., Flight Service,

Hotel Service, Payment Service, User Profile Service,

Recommendation Service), each with its own database,

possibly interacting via Message Queues. Cloud

infrastructure, containers, and orchestration would be

implied.)

Core Principles and Service Decomposition

The design adheres to fundamental microservices principles

[1]:

• Loose Coupling: Services are designed to be

independent, minimizing direct dependencies. Changes

to one service do not necessitate changes or

redeployments of others.

• High Cohesion: Each service encapsulates a single, well-

defined business capability.

• Independent Deployability: Services can be developed,

tested, and deployed independently, accelerating

release cycles.

• Data Ownership: Each service manages its own data

store, promoting autonomy and avoiding shared

database anti-patterns [9].

• Decentralized Governance: Different teams can choose

the best technology stack for their specific service,

fostering innovation.

Based on typical travel platform functionalities, the system

is decomposed into a set of core microservices, including but

not limited to:

• User Management Service: Handles user authentication,

authorization, and profile management.

• Flight Service: Manages flight search, booking, real-time

availability, and airline integrations [17], [22], [26].

• Hotel Service: Manages hotel search, reservations, room

availability, and hotel chain integrations.

• Car Rental Service: Facilitates car search and booking

across various providers.

• Package/Tour Service: Aggregates combinations of

flights, hotels, and activities.

• Payment Service: Securely processes transactions,

integrates with various payment gateways.

• Booking Management Service: Manages post-booking

operations, cancellations, modifications.

• Notification Service: Handles communication with users

(email, SMS notifications).

• Recommendation Service: Provides personalized travel

recommendations based on user behavior and

preferences, potentially leveraging AI/ML [7], [26], [33],

[34].

• Review/Rating Service: Manages user-generated

content for destinations, hotels, flights.

Data Integration Strategy

FECSIT, (2025)

https://irjernet.com/index.php/fecsit 3

The key challenge in distributed travel systems is integrating

data from numerous heterogeneous sources while

maintaining consistency. The framework adopts a

decentralized data management approach where each

microservice owns its domain data [9].

• Polyglot Persistence: Services can use the database

technology best suited for their specific data needs. For

instance, the User Management service might use a

relational database like PostgreSQL for structured user

data [20], [21], [25], while the Recommendation service

might use a NoSQL database optimized for large-scale

key-value or graph data.

• API-driven Data Access: Services expose their data

through well-defined APIs. Other services requiring this

data must call the respective API, ensuring

encapsulation and controlled access [10].

• Event-Driven Architecture: For cross-service data

synchronization and complex workflows, an event-

driven architecture with message brokers (e.g., Kafka,

RabbitMQ) is employed [2]. When a significant event

occurs within one service (e.g., "flight booked,"

"payment successful"), it publishes an event to a

message queue. Other interested services can subscribe

to these events and react accordingly, ensuring eventual

consistency across the system without tight coupling.

For example, a successful payment event from the

Payment Service could trigger the Booking Management

Service to finalize the booking.

• Data Aggregation at the Edge: For user-facing views

requiring data from multiple services (e.g., a "My Trips"

dashboard), an API Gateway acts as a single entry point

for all client requests [2]. It routes requests to the

appropriate microservices and can aggregate responses

from multiple services into a single response for the

client, masking the underlying complexity of the

microservices architecture [2].

Technology Stack and Deployment

The framework relies on cloud-native technologies for

efficient deployment and operation:

• Containerization (Docker): Each microservice is

packaged into a lightweight, portable Docker container,

ensuring consistent environments across development,

testing, and production [4].

• Container Orchestration (Kubernetes): Kubernetes is

utilized for automated deployment, scaling, and

management of the containerized microservices across

a cluster of servers [4], [31]. This provides self-healing

capabilities, load balancing, and efficient resource

utilization [5], [17], [31].

• Cloud Platform: Deployment on a robust cloud platform

(e.g., Google Cloud Platform) provides the necessary

infrastructure, elasticity, and global reach required by

online travel systems [4], [17], [31], [38]. Serverless

computing options (e.g., AWS Lambda, Google Cloud

Functions) could also be integrated for specific

functions, further enhancing scalability and cost-

efficiency [2].

• Service Mesh: A service mesh (e.g., Istio, Linkerd) could

be integrated to handle inter-service communication

complexities such as traffic management, security, and

observability in a distributed environment.

• Monitoring and Logging: Centralized logging and

monitoring tools (e.g., Prometheus, Grafana, ELK stack)

are essential for tracking the health, performance, and

behavior of individual services in a distributed system.

Service Communication and API Management

• RESTful APIs: Services primarily communicate via

synchronous RESTful APIs for request-response

patterns. Each service exposes a well-documented API

[10].

• Asynchronous Messaging: For event-driven flows and

long-running processes, asynchronous messaging

queues are used [2].

• API Versioning: A robust API versioning strategy is

crucial to allow services to evolve independently

without breaking clients or other services [10].

Scalability and Resilience Mechanisms

The microservices approach inherently builds in scalability

and resilience:

• Horizontal Scaling: Individual services can be scaled

independently based on demand, allowing efficient

allocation of resources where needed [5].

• Fault Isolation: A failure in one microservice is

contained and does not propagate to other services,

ensuring the overall system's stability [5]. Load

balancing and circuit breakers prevent overloaded

services from causing cascading failures.

• Service Discovery: Services dynamically find and

communicate with each other through a service registry,

eliminating hardcoded network locations [5].

Results

Implementing a microservices-driven framework for travel

data integration and service delivery is expected to yield

several significant advantages over traditional monolithic

architectures. These benefits directly address the challenges

currently faced by the rapidly evolving online travel

industry.

Enhanced Scalability

The fine-grained decomposition of the system into

independent microservices enables unparalleled scalability

FECSIT, (2025)

https://irjernet.com/index.php/fecsit 4

[5]. Each service can be scaled horizontally based on its

specific workload demands, independent of other services.

For instance, during peak travel seasons, the "Flight Search

Service" can be scaled up to handle millions of queries per

second without requiring the scaling of less-utilized services

like "User Profile Management." This efficient resource

utilization leads to better performance under high load and

reduced operational costs compared to scaling an entire

monolith [17]. Cloud-native deployment with Kubernetes

further automates this process, ensuring elastic scaling and

optimal resource allocation [4], [31].

Increased Resilience and Fault Isolation

One of the most critical advantages is the improved

resilience of the system [5]. In a monolithic architecture, a

single point of failure can lead to a complete system outage.

With microservices, if one service experiences an issue or

crashes, it is isolated, and other services can continue to

operate normally. For example, if the "Car Rental Service"

experiences a temporary outage, users can still book flights

and hotels. This fault isolation significantly enhances the

overall system's uptime and reliability, crucial for a 24/7

global industry like travel. Mechanisms like circuit breakers

and bulkheads further prevent cascading failures.

Accelerated Development and Deployment Cycles

Microservices facilitate parallel development by

independent teams, each focusing on a specific service [3].

This modularity significantly accelerates the development

lifecycle, allowing teams to iterate, test, and deploy new

features or bug fixes more frequently and with greater

confidence [12]. The ability to deploy individual services

without affecting the entire system minimizes downtime and

reduces the risk associated with large-scale releases [3]. This

agility allows travel platforms to respond rapidly to market

changes, competitive pressures, and evolving customer

demands.

Improved Data Consistency and Management

By promoting data ownership at the service level, the

architecture inherently improves data consistency within

each bounded context and simplifies data management [9].

While eventual consistency across services is often a design

trade-off, this model avoids the complexities and contention

issues of a large, shared monolithic database. Each service

can choose the most appropriate database technology

(polyglot persistence) for its specific data needs, leading to

optimized performance and simplified schema evolution for

individual data stores [9], [20], [21], [25].

Flexibility and Technological Agility

The decentralized nature of microservices fosters

technological flexibility [27]. Teams can select the best

programming languages, frameworks, and tools for each

individual service, rather than being locked into a single

technology stack [1], [3]. This allows the platform to adopt

new innovations rapidly (e.g., integrate new AI/ML models

[7], [22], [26], [28], [33], [34], [35], [36], [37] or blockchain

for trust [32]) and integrate with third-party APIs more

easily, providing a competitive edge.

Enhanced Personalization and Real-time Capabilities

The microservices architecture, particularly with an event-

driven backbone, is exceptionally well-suited for enabling

advanced personalization and real-time data processing.

Dedicated microservices for "Recommendation" or

"Dynamic Pricing" can leverage real-time user behavior data

and external market feeds to offer tailored travel options and

pricing, significantly enhancing the customer experience and

optimizing revenue [7], [28], [34], [37]. The ability to process

data at the edge can further enhance responsiveness for

certain use cases [36].

DISCUSSION

The implementation of a microservices-driven framework

for travel data integration and service delivery represents a

paradigm shift from traditional monolithic systems, offering

substantial advantages in an increasingly complex and

competitive industry. The presented architecture inherently

addresses the critical needs for scalability, resilience, and

agility that are often lacking in legacy travel platforms [6],

[27], [39].

The modularity of microservices facilitates the continuous

innovation demanded by the travel sector. For instance, the

ability to independently develop and deploy a new "AI-

driven Itinerary Optimization Service" [33] or a "Blockchain-

based Loyalty Program Service" [32] without disrupting the

core booking functionalities is a testament to this

architectural flexibility. This allows travel companies to

quickly prototype, test, and roll out new features,

maintaining a competitive edge and responding to evolving

customer preferences for personalized and seamless travel

experiences [26], [34].

Despite these compelling advantages, the adoption of a

microservices architecture is not without its challenges. The

primary hurdle lies in the increased operational complexity

[6], [27]. Managing a distributed system with numerous

independently deployed services requires robust

infrastructure, sophisticated monitoring, centralized

logging, and automated deployment pipelines [4], [31].

Debugging issues across multiple services can be

significantly more challenging than in a monolithic

application. Strategies for effective service discovery, load

balancing, and fault tolerance become critical [5].

FECSIT, (2025)

https://irjernet.com/index.php/fecsit 5

Data consistency across services, while managed by

individual service ownership, transitions from immediate

consistency (typical in monoliths with shared databases) to

eventual consistency, which requires careful design to avoid

user experience issues [9]. Developers must adopt new

paradigms like sagas or distributed transactions where

strong consistency is required, adding complexity.

Furthermore, API management and versioning are crucial to

ensure backward compatibility and prevent breaking

changes as services evolve [10]. Without a disciplined

approach, the benefits of independent deployability can be

negated by inter-service dependency hell.

Security in a microservices environment also presents

unique considerations, as security measures need to be

applied at the service level, and communication channels

between services must be secured [27]. Finally, the cultural

shift within development teams is significant; moving from a

single large team working on a monolith to multiple small,

autonomous teams managing distinct services requires new

organizational structures and communication strategies.

Future Work

The proposed microservices framework opens several

exciting avenues for future research and development

within the travel domain:

• Deeper AI/ML Integration: Further research into

integrating advanced AI and machine learning models

directly into microservices for enhanced

personalization [7], dynamic pricing [34], real-time

recommendations [26], [33], and predictive analytics for

operational efficiency [28], [37]. This includes exploring

AI-driven resource allocation for microservices within

hybrid cloud environments to optimize performance

and cost [37].

• Blockchain for Trust and Transparency: Investigate the

practical implementation of blockchain technology

within specific microservices (e.g., for secure payment

processing, verifiable loyalty programs, or immutable

booking records) to enhance trust and transparency

across the travel ecosystem [32], [35].

• Edge Computing Integration: Explore the deployment of

lightweight microservices or edge-enabled components

closer to the data sources or end-users to enable real-

time processing and ultra-low latency for critical

operations, such as immediate availability checks or

personalized alerts [24], [36].

• Serverless Microservices: Further explore the benefits

and challenges of deploying individual microservices as

serverless functions (Function-as-a-Service, FaaS) to

achieve extreme scalability and reduce operational

overhead, particularly for event-driven workflows [2].

• Performance Optimization: Conduct empirical studies

on the real-time performance optimization of such

systems, including strategies for caching, data

replication, and distributed tracing to identify and

resolve bottlenecks in complex microservice

interactions [37].

• Automated Governance and Observability: Develop

more sophisticated tools and methodologies for

automated governance, monitoring, and self-healing

capabilities within large-scale microservices

deployments to manage their inherent complexity.

• Security Frameworks: Design and evaluate

comprehensive security frameworks specifically

tailored for distributed microservices in the travel

industry, considering aspects like API security, data

encryption, and access control across services.

In conclusion, the microservices-driven framework for

integrated travel data and service delivery offers a robust,

scalable, and agile solution for the modern travel industry.

By embracing this architectural paradigm, travel platforms

can overcome the limitations of legacy systems, foster rapid

innovation, and deliver superior, highly personalized

experiences to travelers worldwide. While challenges

associated with distributed systems remain, continuous

advancements in cloud computing, container orchestration,

and AI/ML will further solidify the microservices approach

as the de facto standard for future-proof travel technology

solutions.

REFERENCES

[1] Lewis J, Fowler M: Microservices: A definition of this new

architectural term. (2014).

https://martinfowler.com/articles/microservices.html.

[2] Barua B, Kaiser MS: A methodical framework for

integrating serverless cloud computing into microservice

architectures. Preprints.

10.20944/preprints202410.0494.v1.

[3] Newman S: Building microservices: Designing fine-

grained systems. (2021).

https://book.northwind.ir/bookfiles/building-

microservices/Building.Microservices.pdf.

[4] Shah J, Dubaria D: Building modern clouds: Using Docker,

Kubernetes & Google Cloud Platform. 2019 IEEE 9th Annual

Computing and Communication Workshop and Conference

(CCWC). 2019, 0184-0189. 10.1109/CCWC.2019.8666479.

[5] Barua B, Kaiser MS: Enhancing resilience and scalability

in travel booking systems: A microservices approach to fault

tolerance, load balancing, and service discovery.

10.48550/arXiv.2410.19701.

[6] Jamshidi P, Pahl C, Mendonça NC, Lewis J, Tilkov S:

Microservices: The journey so far and challenges ahead. IEEE

Software. 2018, 35:24-35. 10.1109/ms.2018.2141039.

[7] Barua B, Kaiser MS: Leveraging machine learning for real-

time personalization and recommendation in airline

industry [PREPRINT]. 10.20944/preprints202410.2436.v1.

FECSIT, (2025)

https://irjernet.com/index.php/fecsit 6

[8] Thönes J: Microservices. IEEE Software. 2015, 32:116-

116. 10.1109/ms.2015.11.

[9] Barua B, Whaiduzzaman M, Sarker M, Kaiser M, Barros A:

Designing and implementing a distributed database for

microservices cloud-based online travel portal. Sentiment

Analysis and Deep Learning. Shakya S, Du KL, Ntalianis K

(ed): Springer, Singapore; 2023. 1432:295-314.

10.1007/978-981-19-5443-6_22.

[10] Serbout S, Pautasso C: How are web APIs versioned in

practice? A large-scale empirical study. Journal of Web

Engineering. 2024, 23:465-506. 10.13052/jwe1540-

9589.2341.

[11] Dragoni N, Giallorenzo S, Lluch Lafuente A, Mazzara M,

Montesi F, Mustafin R, Safina L: Microservices: Yesterday,

today, and tomorrow. Present and Ulterior Software

Engineering. Mazzara M, Meyer B (ed): Springer, Cham;

2017. 195-216. 10.1007/978-3-319-67425-4_12.

[12] Bakshi K: Microservices-based software architecture

and approaches. 2017 IEEE Aerospace Conference, Big Sky,

MT, USA. 2017, 1-8. 10.1109/AERO.2017.7943959.

[13] Barua B: M-commerce in Bangladesh -status, potential

and constraints. International Journal of Information

Engineering and Electronic Business. 2016, 8:22-27.

10.5815/ijieeb.2016.06.03.

[14] Larrucea X, Santamaria I, Colomo-Palacios R, Ebert C:

Microservices. IEEE Software. 2018, 35:96-100.

10.1109/ms.2018.2141030.

[15] Barua B, Whaiduzzaman M: A methodological

framework on development the garment payroll system

(GPS) as SaaS. 2019 1st International Conference on

Advances in Information Technology (ICAIT). 2019, 431-

435. 10.1109/ICAIT47043.2019.8987325.

[16] Howlader SMN, Barua B, Sarker MMS, Kaiser MS,

Whaiduzzaman M: Automatic yard monitoring and humidity

controlling system based on IoT. 2023 International

Conference on Advanced Computing & Communication

Technologies (ICACCTech). 2023, 397-403.

10.1109/ICACCTech61146.2023.00072.

[17] Barua B, Kaiser MS: Cloud-enabled microservices

architecture for next-generation online airlines reservation

systems [PREPRINT]. 10.21203/rs.3.rs-5182678/v1.

[18] Barua B, Obaidullah MD: Development of the student

management system (SMS) for universities in Bangladesh.

BUFT Journal. 2014, 2:57-66.

[19] Chaki PK, Sazal MMH, Barua B, Hossain MS, Mohammad

KS: An approach of teachers' quality improvement by

analyzing teaching evaluations data. 2019 Second

International Conference on Advanced Computational and

Communication Paradigms (ICACCP). 2019, 1-5.

10.1109/ICACCP.2019.8882915.

[20] Juba S, Volkov A: Learning PostgreSQL 11: A Beginner's

Guide to Building High-Performance PostgreSQL Database

Solutions. Packt, Birmingham, UK; 2019.

[21] Momjian B: PostgreSQL: Up and Running (4th ed).

O'Reilly Media, Sebastopol, CA; 2021.

[22] Barua B, Mozumder MJU, Kaiser MS, Barua I: Trends and

challenges in AI-driven microservices for cloud-based airline

reservation systems: A review. 2025 3rd International

Conference on Intelligent Data Communication Technologies

and Internet of Things (IDCIoT). 2025, 1902-1911.

10.1109/IDCIOT64235.2025.10915076.

[23] Kubra KT, Barua B, Sarker MM, Kaiser MS: An IoT-based

framework for mitigating car accidents and enhancing road

safety by controlling vehicle speed. 2023 7th International

Conference on I-SMAC (IoT in Social, Mobile, Analytics and

Cloud) (I-SMAC). 2023, 46-52. 10.1109/I-

SMAC58438.2023.10290219.

[24] Tian H, Xu X, Lin T, Cheng Y, Qian C, Ren L, Bilal M: DIMA:

Distributed cooperative microservice caching for internet of

things in edge computing by deep reinforcement learning.

World Wide Web. 2022, 25:1769-1792. 10.1007/s11280-

021-00939-7.

[25] Ünal HT, Mete S, Vurgun OU, Mendi AF, Özkan Ö, Nacar

MA: Postgresql database management system: ODAK. 2023

Innovations in Intelligent Systems and Applications

Conference (ASYU). 2023, 1-5.

10.1109/ASYU58738.2023.10296600.

[26] Barua B, Mozumder MJU, Kaiser MS, Barua I: Building

scalable airlines reservation systems: A microservices

approach using AI and deep learning for enhanced user

experience. 2025 4th International Conference on Sentiment

Analysis and Deep Learning (ICSADL). 2025, 941-950.

10.1109/ICSADL65848.2025.10933362.

[27] Di Francesco P, Lago P, Malavolta I: Architecting with

microservices: A systematic mapping study. Journal of

Systems and Software. 2019, 150:77-97.

10.1016/j.jss.2019.01.001.

[28] Barua B, Kaiser MS: Microservices-based framework for

predictive analytics and real-time performance

enhancement in travel reservation systems.

10.48550/arXiv.2412.15616.

[29] Barua B, Kaiser MS: Novel architecture for distributed

travel data integration and service provision using

microservices. 10.48550/arXiv.2410.24174.

[30] Chaki PK, Barua B, Sazal MMH, Anirban S: PMM: A model

for Bangla parts-of-speech tagging using sentence map.

Information, Communication and Computing Technology.

Badica C, Liatsis P, Kharb L, Chahal D (ed): Springer,

Singapore; 2020. 1170:181-194. 10.1007/978-981-15-

9671-1_15.

[31] Barua B, Kaiser MS: A methodological framework of

containerized microservices orchestration and provisioning

in the cloud: A case study of online travel platforms.

Challenges and Opportunities for Innovation in India. Mishra

S, Singh AK, Prajapati P (ed): CRC Press, London; 2025. 183.

10.1201/9781003606260-33.

FECSIT, (2025)

https://irjernet.com/index.php/fecsit 7

[32] Barua B, Kaiser MS: Blockchain-based trust and

transparency in airline reservation systems using

microservices architecture. 10.48550/arXiv.2410.14518.

[33] Barua B, Kaiser MS: Optimizing travel itineraries with

AI algorithms in a microservices architecture: Balancing

cost, time, preferences, and sustainability.

10.48550/arXiv.2410.17943.

[34] Barua B, Kaiser MS: Leveraging microservices

architecture for dynamic pricing in the travel industry:

Algorithms, scalability, and impact on revenue and customer

satisfaction. 10.48550/arXiv.2411.01636.

[35] Barua B, Kaiser MS: A next-generation approach to

airline reservations: Integrating cloud microservices with AI

and blockchain for enhanced operational performance.

10.48550/arXiv.2411.06538.

[36] Barua B, Kaiser MS: Optimizing airline reservation

systems with edge-enabled microservices: A framework for

real-time data processing and enhanced user

responsiveness. 10.48550/arXiv.2411.12650.

[37] Barua B, Kaiser MS: AI-driven resource allocation

framework for microservices in hybrid cloud platforms.

10.48550/arXiv.2412.02610.

[38] Barua B, Kaiser MS: Real-time performance

optimization of travel reservation systems using AI and

microservices. 10.48550/arXiv.2412.06874.

[39] Newman S: Monolith to Microservices: Evolutionary

Patterns to Transform Your Monolith. O'Reilly Media,

Sebastopol, CA; 2021.

[40] Howlader SMN, Hossain MM, Khanom S, Sarker S, Barua

B: An intelligent car locating system based on Arduino for a

massive parking place. Multi-Strategy Learning

Environment. Vimal V, Perikos I, Mukherjee A, Piuri V (ed):

Springer, Singapore; 2024. 19-33. 10.1007/978-981-97-

1488-9_2.

41] Barua B, Kaiser MS: Design and evaluation of a

microservices cloud framework for online travel platforms.

10.48550/arXiv.2505.14508.

