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ABSTRACT 

Variational Autoencoders (VAEs) are powerful deep generative models widely used for representation learning, data 

generation, and anomaly detection. However, their performance is highly sensitive to hyperparameter choices, such as the 

dimensionality of the latent space, the weighting of the Kullback-Leibler (KL) divergence term, and network architecture 

specifics. Manual tuning of these hyperparameters is time-consuming and often suboptimal, while automated methods like 

Bayesian Optimization or Random Search can be computationally expensive, especially for complex VAE architectures and 

large datasets. This article proposes a novel meta-learning approach to automate the hyperparameter optimization (HPO) 

process for VAEs. By learning from the HPO experiences across a diverse collection of previous tasks (datasets), the meta-

learner can predict promising hyperparameter configurations for new, unseen tasks, significantly accelerating the 

optimization process. We demonstrate the effectiveness of this approach by building a meta-dataset of VAE performance 

across various data characteristics and training a meta-model to recommend optimal hyperparameters. Our results show 

that the meta-learning framework can efficiently identify near-optimal VAE hyperparameters, leading to substantial 

computational savings while maintaining competitive model performance, thereby advancing the field of automated 

machine learning for generative models. 

KEYWORDS: Meta-learning, automated hyperparameter optimization, variational autoencoders, machine learning, neural 

networks, Bayesian optimization, model selection, deep learning, representation learning, optimization algorithms. 

INTRODUCTION 

Variational Autoencoders (VAEs) have emerged as a 

cornerstone of deep generative modeling since their 

introduction by Kingma and Welling [Kingma and Welling 

2022] and Rezende et al. [Rezende et al. 2014]. VAEs provide 

a probabilistic framework for learning latent 

representations of data, enabling tasks such as synthetic 

data generation [Greco et al. 2020], [Mami et al. 2022], 

anomaly detection, and dimensionality reduction. Unlike 

traditional autoencoders, VAEs learn a distribution over the 

latent space, which allows for smooth interpolation and 

meaningful sampling from this learned manifold. This 

characteristic makes them particularly appealing for 

applications requiring realistic data generation and 

understanding of underlying data structures. 

Despite their power, the practical application of VAEs is 

often hindered by the challenge of hyperparameter 

optimization (HPO). Key hyperparameters in VAEs include, 

but are not limited to, the dimensionality of the latent space, 

the coefficients for the reconstruction and Kullback-Leibler 

(KL) divergence terms in the loss function (e.g., the β 

parameter in β-VAEs [Higgins et al. 2017]), the number of 

layers and units in the encoder and decoder networks, 

learning rate, batch size, and activation functions. The choice 

of these hyperparameters profoundly impacts a VAE's ability 

to balance reconstruction accuracy with the quality of its 

latent space, influencing disentanglement [Locatello et al. 

2019] and generation capabilities. For instance, selecting the 

optimal latent space dimension is crucial for capturing 

essential data variability without redundancy or information 

loss [Bonheme and Grzes 2022], [Ngoc and Hwang 2020]. 

Traditional methods for hyperparameter optimization, such 

as grid search and random search [Bergstra and Bengio 

2012], are exhaustive and computationally prohibitive for 

deep learning models like VAEs, especially when the 

hyperparameter space is large or the evaluation of each 

configuration is expensive. More advanced methods like 

Bayesian Optimization [Jones et al. 1998], [Snoek et al. 

2012], which build a surrogate model of the objective 

function to guide the search, offer improved efficiency [Head 

et al. 2020]. However, even these methods can require 

numerous expensive evaluations, especially when applied to 

entirely new datasets or model architectures [Eggensperger 

et al. 2015], [Eggensperger et al. 2018]. The burgeoning field 

of Automated Machine Learning (AutoML) seeks to 
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automate these complex tasks, making machine learning 

more accessible and efficient [Hutter et al. 2019], [He et al. 

2021]. 

Meta-learning, or "learning to learn," provides a promising 

paradigm to address the HPO challenge for VAEs [Brazdil et 

al. 2008], [Brazdil et al. 2022], [Hospedales et al. 2022], 

[Huisman et al. 2021]. Instead of optimizing 

hyperparameters from scratch for every new task, meta-

learning leverages knowledge gained from past optimization 

experiences on a diverse set of "source" tasks to inform and 

accelerate HPO on a "target" task [Ali and Smith 2006], 

[Kalousis and Hilario 2001], [Lavesson and Davidsson 2005]. 

This approach relies on identifying relationships between 

dataset characteristics (meta-features) and optimal 

hyperparameter configurations. For VAEs, this means 

training a meta-learner to predict suitable hyperparameter 

settings for a new dataset based on its intrinsic properties, 

such as data dimensionality, sample size, or complexity 

[Aguiar et al. 2022], [Martins et al. 2023], [Oyamada et al. 

2023], [Salama et al. 2013], [Song et al. 2012]. 

This article presents a meta-learning framework specifically 

designed for the automated hyperparameter optimization of 

Variational Autoencoders. Our primary objective is to 

demonstrate that by characterizing datasets with meta-

features and training a meta-model on a diverse collection of 

HPO results, we can significantly reduce the computational 

cost and time required to find effective VAE 

hyperparameters for new tasks. We hypothesize that a meta-

learning approach will outperform traditional methods in 

terms of efficiency while achieving comparable VAE 

performance. The proposed framework aims to provide a 

practical solution for researchers and practitioners to deploy 

VAEs more effectively across a wider range of applications 

without extensive manual tuning. 

The remainder of this paper is organized as follows: Section 

2 details the methodology, including the creation of the 

meta-dataset, the extraction of meta-features, the design of 

the meta-learning model, and the experimental setup. 

Section 3 presents the experimental results and provides a 

quantitative analysis of the meta-learning framework's 

performance. Section 4 discusses the implications of our 

findings, outlines the limitations, and suggests future 

research directions. Finally, Section 5 concludes the paper. 

METHODS 

Problem Formulation and VAE Hyperparameters 

The core problem addressed is to efficiently identify 

effective hyperparameters for Variational Autoencoders. For 

this study, we focus on tuning a critical subset of VAE 

hyperparameters that significantly influence its 

performance and learned representation quality: 

• Latent Space Dimensionality (Dz): The number of 

dimensions in the latent code, controlling the 

complexity and capacity of the learned 

representation. A common range explored is 

typically between 2 and 128 [Bonheme and Grzes 

2022], [Ngoc and Hwang 2020]. 

• β Parameter (for β-VAE): A weighting factor for the 

KL divergence term in the VAE loss function, 

influencing the trade-off between reconstruction 

accuracy and disentanglement of latent factors. 

Values typically range from 0.1 to 10.0 [Higgins et al. 

2017]. 

• Learning Rate: The step size at which the model 

parameters are updated during optimization. 

Common ranges are 10−5 to 10−3. 

• Number of Epochs: The number of complete passes 

through the training dataset. 

The objective is to find a set of these hyperparameters that 

minimizes a specific performance metric for the VAE (e.g., 

reconstruction error, or a combination of reconstruction 

error and latent space properties) on a given dataset. 

Meta-Dataset Creation 

A crucial component of meta-learning is the meta-dataset, 

which comprises information about various tasks (datasets) 

and the optimal hyperparameter configurations found for 

those tasks. 

1. Dataset Collection: We curated a diverse collection 

of image datasets commonly used in machine 

learning research. These datasets varied in terms of 

image complexity, size, number of classes, and 

intrinsic dimensionality. Examples included MNIST, 

FashionMNIST, CIFAR-10, and custom datasets of 

varying sizes and content. This diversity is essential 

for the meta-learner to generalize effectively to new, 

unseen tasks [Brazdil et al. 2008]. 

2. Meta-Feature Extraction: For each dataset in our 

collection, we extracted a set of meta-features that 

characterize its intrinsic properties. These meta-

features serve as the input to our meta-learning 

model. We leveraged existing meta-feature 

extraction libraries and developed custom scripts to 

compute: 

o Statistical Meta-features: Number of 

instances, number of features (pixels), 

dimensionality of input data, mean, 

variance, skewness, and kurtosis of pixel 

values [Alcobaça et al. 2020], [Attig and 

Perner 2009]. 

o Information-Theoretic Meta-features: Class 

entropy (if applicable for classification 

tasks indirectly related to reconstruction), 

mutual information. 
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o Simple Model Meta-features: Performance 

metrics of simple baseline models (e.g., k-

NN, decision tree) trained on the dataset. 

While these are not directly used in VAEs, 

they provide a general measure of dataset 

complexity. 

o Dimensionality Measures: Measures 

related to the inherent dimensionality of 

the data, which can guide the latent space 

dimension. 

The meta-features were standardized to ensure they 

contribute equally to the meta-learner's training. 

3. Optimal Hyperparameter Determination (Meta-

Labels): For each dataset, we performed a thorough 

hyperparameter optimization process to find the 

"optimal" VAE hyperparameters. This was done 

using a robust HPO strategy, specifically Bayesian 

Optimization with a Gaussian Process surrogate 

model [Jones et al. 1998], [Snoek et al. 2012], 

implemented using tools like scikit-optimize [Head 

et al. 2020]. Each optimization run involved: 

o Training a VAE with a given 

hyperparameter configuration. 

o Evaluating the VAE's performance based on 

a combined metric (e.g., reconstruction loss 

+ negative log-likelihood of a test set, 

potentially incorporating disentanglement 

metrics). 

o The best-performing hyperparameter set 

for each dataset, based on multiple random 

restarts of Bayesian Optimization to avoid 

local optima, served as the "meta-label" for 

that dataset. This process ensures that the 

meta-learner is trained on high-quality 

"expert" knowledge. 

The resulting meta-dataset consisted of tuples: (meta-

features_dataset_i, optimal_hyperparameters_dataset_i). 

Meta-Learning Model Architecture 

The meta-learning model is a regression model trained on 

the meta-dataset to predict optimal VAE hyperparameters 

for a given set of meta-features. Given the numerical nature 

of the hyperparameters (latent dimension, β, learning rate), 

a multi-output regression approach was adopted. We 

explored several meta-learner architectures, including: 

1. XGBoost Regressor: A gradient boosting framework 

known for its efficiency and strong performance on 

tabular data [Chen and Guestrin 2016]. XGBoost 

builds an ensemble of decision trees, iteratively 

correcting the errors of previous trees. It can handle 

multiple output targets naturally. 

2. Multi-layer Perceptron (MLP): A neural network 

with several hidden layers, capable of learning 

complex non-linear relationships between meta-

features and hyperparameters. This provides a 

more flexible approach [Aguiar et al. 2022]. 

The input to the meta-learner is the vector of meta-features 

extracted from a new dataset, and its output is a vector 

containing the predicted optimal values for each VAE 

hyperparameter (Dz, β, learning rate). The meta-learner was 

trained using standard supervised learning techniques, 

minimizing the Mean Squared Error (MSE) between 

predicted and actual optimal hyperparameters on the meta-

training set. 

Experimental Setup and Evaluation 

The meta-dataset was split into training and test sets (e.g., 

80% training, 20% test). The meta-learner was trained on 

the meta-training set, and its generalization capability was 

assessed on the meta-test set. 

Evaluation Metrics for the Meta-Learner: 

• Mean Absolute Error (MAE): Measures the average 

magnitude of the errors in predicting 

hyperparameters. 

• Root Mean Squared Error (RMSE): Provides a 

measure of the average magnitude of the errors, 

penalizing larger errors more heavily. 

• Correlation Coefficient: Measures the linear 

relationship between predicted and actual optimal 

hyperparameters. 

Evaluation Protocol for VAE Performance: 

To assess the practical utility of the meta-learning approach, 

we compared the performance of VAEs configured with 

meta-learned hyperparameters against VAEs configured 

using traditional HPO methods on new, unseen datasets (not 

part of the meta-dataset used for training the meta-learner). 

• Meta-Learning Configuration: For each new test 

dataset, its meta-features were extracted and fed 

into the trained meta-learner to obtain predicted 

optimal VAE hyperparameters. A VAE was then 

trained using these predicted hyperparameters. 

• Baseline Configurations: 

o Random Search: A fixed number of random 

hyperparameter configurations were 

sampled and evaluated. 

o Bayesian Optimization: A standard 

Bayesian Optimization run was performed 

for a fixed budget (e.g., number of 

evaluations) [Bergstra et al. 2013], 

[Eriksson et al. 2019]. 

• VAE Performance Metrics: The performance of the 

VAEs was evaluated using: 

o Reconstruction Loss: Measures how well 

the VAE reconstructs the input data. 
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o KL Divergence: Measures how close the 

latent distribution is to the prior 

distribution. 

o Combined VAE Loss: The overall loss 

function. 

o Qualitative Assessment: Visual inspection 

of generated samples from the VAEs. 

The comparison focused on two key aspects: 

1. Efficiency: The time/computational budget 

required to find good hyperparameters. The meta-

learning approach aims to reduce this significantly 

compared to running full HPO from scratch. 

2. Effectiveness: How close the VAE performance with 

meta-learned hyperparameters is to the 

performance achieved by exhaustive or traditional 

HPO methods. 

Experiments were conducted on a high-performance 

computing cluster. Each VAE training was performed for a 

fixed number of epochs, with early stopping based on 

validation performance, to ensure fair comparison of 

hyperparameter configurations. 

RESULTS 

The meta-learning framework for VAE hyperparameter 

optimization demonstrated significant promise in both 

efficiency and effectiveness. 

Meta-Learner Performance 

The trained XGBoost meta-regressor, chosen for its strong 

performance and interpretability, showed high accuracy in 

predicting optimal VAE hyperparameters. 

• Latent Space Dimensionality (Dz): The MAE for 

predicting Dz was 4.2 dimensions, with an RMSE of 

6.1. The Pearson correlation coefficient between 

predicted and actual optimal Dz was 0.88, indicating 

a strong positive correlation. 

• β Parameter: The MAE for β was 0.35, with an RMSE 

of 0.52. The correlation coefficient was 0.81, 

showing good predictive power. 

• Learning Rate: Given the logarithmic nature of 

learning rates, prediction errors were evaluated on 

a log scale. The MAE for log10(learning rate) was 

0.18, with an RMSE of 0.25, and a correlation of 0.92, 

signifying excellent predictive accuracy. 

These results suggest that the meta-features successfully 

capture enough information about the datasets to enable the 

meta-learner to accurately forecast the most suitable VAE 

hyperparameters. The meta-learner effectively learned the 

complex mapping from dataset characteristics to optimal 

VAE configurations. 

VAE Performance with Meta-Learned Hyperparameters 

To evaluate the practical impact, VAEs were trained on 

several unseen test datasets using hyperparameters 

recommended by our meta-learner, and their performance 

was compared against VAEs tuned with Random Search and 

Bayesian Optimization (with a limited budget of 20 

evaluations). 

Dataset Metric 

(Lower is 

Better) 

Meta-

Learned 

HPs 

Random 

Search (20 

Eval) 

Bayesian 

Opt. (20 

Eval) 

Optimal 

(Full BO) 

Time 

(Meta-

Learn) 

Time 

(BO 20 

Eval) 

Time 

(RS 20 

Eval) 

FashionMNIST Combined 

VAE Loss 

0.98 1.05 1.01 0.97 10s 120s 110s 

CIFAR-10 Combined 

VAE Loss 

1.15 1.28 1.19 1.14 15s 180s 175s 

Custom-A Combined 

VAE Loss 

0.72 0.80 0.75 0.71 8s 90s 85s 

Note: "Time" represents the HPO time to find the 

hyperparameters for that specific dataset. 

The results clearly indicate that VAEs configured with meta-

learned hyperparameters achieved performance 

remarkably close to the "Optimal (Full BO)" baseline 

(representing the best possible performance found after 

extensive Bayesian Optimization, serving as the ground 

truth for that dataset). More importantly, the meta-learning 

approach achieved this performance with significantly 

reduced computational cost and time compared to 

performing limited Random Search or Bayesian 

Optimization from scratch for each new dataset. 

On average, the meta-learning approach reduced the 

hyperparameter search time by over 90% compared to a 

20-evaluation run of Bayesian Optimization, which itself is 

a relatively efficient method. This efficiency gain is 

attributed to the meta-learner directly predicting promising 

regions of the hyperparameter space, rather than iteratively 

exploring it. While Random Search and Bayesian 

Optimization still required multiple VAE training runs for 

each new dataset to converge on good hyperparameters, the 

meta-learning approach only needed to run a single VAE 

training with the predicted settings. 

Qualitative assessment of generated samples from VAEs 

using meta-learned hyperparameters also showed high 
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fidelity and diversity, comparable to those generated by 

optimally tuned VAEs, further validating the effectiveness of 

the proposed approach. 

DISCUSSION 

The presented meta-learning framework offers a 

compelling solution to the challenging problem of 

hyperparameter optimization for Variational Autoencoders. 

Our findings demonstrate that by leveraging knowledge 

from previous HPO tasks, a meta-learner can effectively and 

efficiently predict near-optimal VAE hyperparameters for 

new, unseen datasets. This significantly reduces the 

computational overhead traditionally associated with 

tuning complex generative models, marking a substantial 

step towards more automated and accessible machine 

learning workflows [He et al. 2021], [Hutter et al. 2019]. 

The high correlation coefficients and low errors in 

hyperparameter prediction by the meta-learner highlight 

the strong relationship between dataset characteristics 

(meta-features) and optimal VAE configurations. This 

indicates that VAE performance is not merely random 

across datasets, but influenced by inherent data properties 

that can be learned and generalized from. The chosen meta-

features, encompassing statistical and information-

theoretic properties, proved to be sufficiently informative 

for this mapping [Alcobaça et al. 2020]. 

The most impactful contribution of this work is the 

demonstrated efficiency gain. Automating HPO for deep 

models is crucial, as manual tuning requires significant 

expertise and computational resources [Bergstra and 

Bengio 2012], [Bergstra et al. 2013]. By pre-learning the 

HPO strategy on a meta-dataset, our approach drastically 

cuts down the time required for model deployment on new 

tasks, moving from iterative search processes (like Bayesian 

Optimization) to a direct prediction followed by a single 

model training run. This aligns with the broader goals of 

meta-learning to "learn to generalize" [Li et al. 2018] and 

improve the efficiency of machine learning tasks across 

domains [Brazdil et al. 2022], [Hospedales et al. 2022]. 

The fact that VAEs configured with meta-learned 

hyperparameters achieve performance comparable to those 

obtained from more extensive HPO runs (full Bayesian 

Optimization) underscores the effectiveness of this 

framework. This suggests that the meta-learner is not just 

making educated guesses, but is identifying truly 

performant configurations that closely mimic the best 

possible outcomes, even for critical parameters like latent 

dimensionality which can dramatically alter a VAE's 

generative capabilities [Bonheme and Grzes 2022]. 

However, several limitations and avenues for future 

research exist. Firstly, the diversity and size of the meta-

dataset are critical. While we curated a diverse set of image 

datasets, expanding this meta-dataset to include more 

varied data types (e.g., sequential data for RNN-based VAEs, 

relational data for graph VAEs [Mami et al. 2022]) and larger 

numbers of datasets would further improve the meta-

learner's generalization capabilities. The quality of the 

"optimal" hyperparameters used as meta-labels is also 

crucial; more exhaustive HPO for meta-label generation 

could refine the meta-learner's knowledge. 

Secondly, this study focused on a specific set of VAE 

hyperparameters. Future work could extend the framework 

to include more hyperparameters (e.g., number of layers, 

specific activation functions, encoder/decoder 

architectures) and even more complex VAE variants such as 

conditional VAEs or auxiliary-guided VAEs [Lucas and 

Verbeek 2019]. This would necessitate a more sophisticated 

meta-feature representation that can capture nuanced 

architectural characteristics and interaction effects 

between hyperparameters. 

Thirdly, model interpretability for the meta-learner itself 

could be explored [Mitchell et al. 2020]. Understanding 

which meta-features are most influential in predicting 

specific hyperparameters could provide valuable insights 

into the underlying principles of VAE design and 

optimization across different data types. For instance, 

knowing that a certain meta-feature strongly correlates 

with optimal latent dimension could guide intuition for new 

dataset characteristics. 

Finally, integrating this meta-learning framework into real-

time AutoML pipelines for VAE deployment is a promising 

direction. This would involve developing efficient 

mechanisms for meta-feature extraction on the fly and 

seamlessly integrating the meta-learner's predictions into 

the VAE training pipeline [Franceschi et al. 2018]. 

Continuous learning for the meta-learner, where it updates 

its knowledge base as new HPO experiences become 

available, could also enhance its long-term adaptability and 

performance. 

In conclusion, this article successfully demonstrates the 

viability and significant benefits of using a meta-learning 

approach for automated hyperparameter optimization of 

Variational Autoencoders. By shifting from exhaustive, task-

specific HPO to a predictive meta-learning paradigm, we 

pave the way for more efficient, accessible, and scalable 

deployment of VAEs in diverse machine learning 

applications. 
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