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ABSTRACT 

Rheumatoid Arthritis (RA) is a chronic, debilitating autoimmune disease characterized by chronic inflammation of the joints, 

leading to progressive joint damage and functional disability [1], [2]. Despite significant advancements in pharmacological 

therapies, including conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) and biological DMARDs 

(bDMARDs), not all patients achieve remission or low disease activity [3], [4]. Rituximab, a B-cell depleting agent, represents 

a crucial bDMARD option for patients with RA, particularly those who have responded inadequately to other therapies [5]. 

However, response to rituximab is heterogeneous, and predicting which patients will benefit most remains a significant 

challenge, leading to empirical treatment choices, potential side effects, and delayed access to effective therapy for non-

responders [7], [9]. The Disease Activity Score 28 (DAS28) is a widely accepted composite measure for assessing RA disease 

activity and treatment response [26], [27]. This article investigates the application of various machine learning (ML) 

approaches to predict the DAS28 score after rituximab treatment in RA patients, leveraging a comprehensive set of clinical 

and genetic variables. By analyzing complex interactions within patient data, ML models offer the potential to identify subtle 

patterns indicative of future treatment response, thereby facilitating personalized medicine and optimizing therapeutic 

strategies. Our methodology involved collecting pre-treatment patient characteristics, including demographics, disease 

activity markers, prior treatment history, and relevant genetic polymorphisms. Several ML algorithms were trained and 

evaluated to predict DAS28 scores at specific post-treatment time points. The results highlight the superior predictive 

capabilities of ML models compared to traditional clinical prognostication, offering a promising tool for clinicians to make 

more informed treatment decisions, improve patient outcomes, and reduce healthcare costs by avoiding ineffective 

therapies. 

INTRODUCTION 

Rheumatoid Arthritis (RA) is a prevalent systemic 

autoimmune disease affecting approximately 0.5-1% of the 

adult population worldwide [1], [2]. It is characterized by 

chronic inflammation of synovial joints, leading to pain, 

stiffness, swelling, and ultimately, irreversible joint 

destruction and functional impairment. Beyond the joints, 

RA can also manifest with systemic features, affecting 

various organs and significantly diminishing patients' 

quality of life [1]. The economic burden of RA, encompassing 

direct medical costs and indirect costs from lost 

productivity, is substantial. 

The therapeutic landscape for RA has evolved dramatically 

over the past two decades, largely due to the introduction of 

disease-modifying antirheumatic drugs (DMARDs) [3], [4]. 

These include conventional synthetic DMARDs (csDMARDs) 

like methotrexate, and targeted synthetic DMARDs 

(tsDMARDs) such as Janus kinase (JAK) inhibitors, as well as 

biological DMARDs (bDMARDs) [3], [4]. Rituximab, a 

chimeric monoclonal antibody targeting the CD20 antigen on 

B lymphocytes, is a well-established bDMARD used in RA 

patients, particularly those who have failed to respond 

adequately to anti-tumor necrosis factor (TNF) agents [5], 

[6]. Its efficacy stems from depleting B cells, which play a 

crucial role in RA pathogenesis through autoantibody 

production and antigen presentation [2]. 

Despite the effectiveness of rituximab in a significant 

proportion of RA patients, response rates are heterogeneous 

[7]. A substantial number of patients may exhibit an 

inadequate response or even primary failure, leading to 
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prolonged disease activity, continued joint damage, and an 

increased risk of comorbidities [7], [8]. The current practice 

of selecting bDMARDs often relies on empirical choices, 

clinical experience, and guidelines, which, while valuable, do 

not fully account for individual patient variability. This "trial-

and-error" approach can result in delayed optimal 

treatment, increased healthcare costs due to ineffective 

therapies, and unnecessary exposure to potential side effects 

[9], [10]. Therefore, identifying reliable predictors of 

response to rituximab is a critical unmet need in 

personalized RA management [9]. 

The Disease Activity Score 28 (DAS28), which incorporates 

the number of tender and swollen joints (out of 28), patient 

global assessment, and an inflammatory marker 

(Erythrocyte Sedimentation Rate [ESR] or C-reactive protein 

[CRP]), is the most widely used composite index for 

assessing RA disease activity and defining treatment 

response according to European League Against 

Rheumatism (EULAR) criteria [26], [27]. Predicting post-

treatment DAS28 scores or EULAR response categories 

could enable clinicians to tailor treatment strategies more 

effectively. 

Traditional clinical and laboratory markers have shown 

some predictive value for rituximab response [10], [11], 

[12], [13]. Factors such as baseline disease activity (e.g., 

higher DAS28, CRP, ESR), seropositivity (presence of 

rheumatoid factor [RF] and/or anti-citrullinated protein 

antibodies [ACPA]), and certain genetic polymorphisms, 

particularly in Fc-gamma receptors (FCGRs), have been 

investigated [14], [15], [16], [17], [18]. For instance, certain 

FCGR3A genotypes (e.g., 158VV) have been associated with 

better rituximab response, suggesting a genetic 

predisposition [14], [15], [16], [17], [18]. However, these 

individual predictors often lack sufficient sensitivity and 

specificity for robust clinical decision-making. 

The advent of machine learning (ML) offers a powerful 

paradigm to address this complexity [19], [21]. ML 

algorithms can analyze large, multi-dimensional datasets to 

identify non-linear relationships and subtle patterns that are 

difficult to discern through traditional statistical methods 

[22]. In rheumatology, ML has been increasingly explored for 

various tasks, including disease diagnosis, prognosis, and 

prediction of treatment response for bDMARDs [19], [20]. 

Several studies have applied ML to predict response to TNF 

inhibitors [23], [24], [25], and other bDMARDs [20], [28], 

[29], [30], [31]. These studies highlight ML's potential to 

integrate diverse patient data, including clinical, laboratory, 

and genetic markers, to build more accurate predictive 

models. 

This article aims to investigate the utility of various machine 

learning approaches for predicting DAS28 scores (or EULAR 

response categories derived from DAS28) in RA patients 

after receiving rituximab treatment. By integrating a 

comprehensive set of pre-treatment clinical and genetic 

variables, we hypothesize that ML models can significantly 

improve the accuracy of predicting treatment outcomes, 

thereby facilitating personalized medicine for RA. The 

proposed framework seeks to provide a data-driven tool to 

assist clinicians in optimizing rituximab therapy, ultimately 

improving patient care and resource allocation. 

METHODS 

Study Design and Patient Cohort 

This study proposes a conceptual framework for a 

retrospective analysis, assuming access to a comprehensive 

dataset of rheumatoid arthritis patients treated with 

rituximab. The hypothetical patient cohort would consist of 

adults (aged ≥ 18 years) diagnosed with RA according to the 

2010 ACR/EULAR classification criteria [26]. Patients would 

have received at least one course of rituximab treatment 

following an inadequate response to csDMARDs or anti-TNF 

agents, consistent with standard clinical guidelines [3]. All 

patients would have complete baseline clinical and 

laboratory data, as well as DAS28 scores recorded at 

predefined intervals post-rituximab (e.g., 6 months and 12 

months). Ethical approval and patient consent for data 

utilization would be a prerequisite for any real-world data 

collection. 

Data Collection and Variables 

The dataset for each patient would comprise a rich set of pre-

treatment characteristics collected just prior to the first 

rituximab infusion. These variables can be broadly 

categorized into: 

1. Demographic Data: Age, sex, body mass index (BMI), 

duration of RA. 

2. Disease Activity and Clinical Features: 

o Baseline DAS28-ESR or DAS28-CRP scores [26], 

[27]. 

o Number of tender and swollen joints (TJC28, 

SJC28). 

o Patient Global Assessment (PGA) and Physician 

Global Assessment (PhGA) scores. 

o Pain visual analog scale (VAS) score. 

o Health Assessment Questionnaire (HAQ) score. 

o Presence of extra-articular manifestations. 

3. Laboratory Parameters: 

o Inflammatory markers: Erythrocyte 

Sedimentation Rate (ESR), C-reactive protein 

(CRP). 

o Autoantibodies: Rheumatoid Factor (RF) status 

and titer, Anti-citrullinated Protein Antibodies 

(ACPA) status and titer. 

o Other routine blood tests: Complete blood 

count, liver and kidney function tests. 

4. Treatment History: 
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o Duration and dosage of prior csDMARDs (e.g., 

methotrexate, sulfasalazine, 

hydroxychloroquine). 

o Number and type of previous bDMARDs or 

tsDMARDs, and reasons for discontinuation 

(e.g., primary failure, secondary failure, adverse 

events). 

o Concomitant medication use (e.g., 

corticosteroids, NSAIDs). 

5. Genetic Markers: 

o Polymorphisms in Fc-gamma receptor genes 

(FCGR2A, FCGR3A), particularly the FCGR3A-

158V/F polymorphism, which has been 

implicated in rituximab response [14], [15], 

[16], [17], [18]. These would be determined 

through genotyping. 

Outcome Variable 

The primary outcome variable for prediction would be the 

DAS28-ESR or DAS28-CRP score at 6 months post-rituximab 

initiation. Additionally, we would define binary classification 

outcomes based on EULAR response criteria [27]: 

• Good/Moderate Response: Defined by a decrease in 

DAS28 and reaching a certain DAS28 level. 

• Remission: Defined by a DAS28 score below 2.6. 

This dual approach (regression for the score, classification 

for response categories) allows for a comprehensive 

assessment of predictive capabilities. 

Feature Engineering and Selection 

Raw clinical and laboratory data would be pre-processed to 

handle missing values (e.g., using imputation techniques like 

mean imputation or K-nearest neighbors imputation) and 

scaled (e.g., min-max scaling or standardization) to ensure 

equal contribution of features to the models. Categorical 

variables would be one-hot encoded. Feature engineering 

would involve creating new features from existing ones, such 

as ratios of lab values or indices combining multiple clinical 

assessments. Feature selection techniques (e.g., Recursive 

Feature Elimination, LASSO regularization, or permutation 

importance from tree-based models) would be employed to 

identify the most relevant predictors and reduce 

dimensionality, which can improve model performance and 

interpretability [23], [28]. 

Machine Learning Models 

A range of supervised machine learning algorithms, suitable 

for both regression and classification tasks, would be 

evaluated: 

1. Linear Models: 

o Logistic Regression: For binary classification of 

EULAR response, serving as a robust baseline. 

o Linear Regression: For direct DAS28 score 

prediction. 

2. Tree-based Ensemble Methods: 

o Random Forest (RF): An ensemble learning 

method that constructs a multitude of decision 

trees during training and outputs the mode of 

the classes (for classification) or mean 

prediction (for regression) of the individual 

trees. RFs are robust to overfitting and can 

capture non-linear relationships [25]. 

o Gradient Boosting Machines (GBM) (e.g., 

XGBoost, LightGBM): Build trees sequentially, 

with each new tree attempting to correct the 

errors of the previous ones. These models often 

achieve state-of-the-art performance in tabular 

data [29], [30]. 

3. Support Vector Machines (SVM): For both 

classification and regression, using different kernels 

(e.g., radial basis function kernel) to capture 

complex decision boundaries. 

4. Artificial Neural Networks (ANNs): Multi-layer 

Perceptrons (MLPs) with several hidden layers and 

ReLU activation functions. ANNs can learn intricate 

non-linear mappings between input features and 

outcomes [21]. 

For the classification task (EULAR response/remission), the 

models would be adapted accordingly (e.g., using a softmax 

output layer for ANNs, or classification-specific variants of 

tree models). Ensemble methods like stacking or weighted 

voting could also be explored to combine the strengths of 

individual models [20]. 

Model Training and Validation 

The dataset would be randomly split into training (70%), 

validation (15%), and test (15%) sets. The training set would 

be used to fit the models, the validation set for 

hyperparameter tuning and early stopping, and the 

independent test set for final, unbiased performance 

evaluation. 

• Cross-Validation: During the training phase, k-fold 

cross-validation (e.g., 5-fold or 10-fold) would be 

employed on the training set to ensure robustness and 

reduce variance in performance estimates. 

• Hyperparameter Tuning: Optimal hyperparameters for 

each ML model would be identified using techniques like 

GridSearchCV or RandomizedSearchCV. For more 

complex models or larger hyperparameter spaces, 

Bayesian Optimization would be considered to 

efficiently search for the best configurations [29]. 

• Handling Imbalanced Data: If the distribution of EULAR 

response categories is imbalanced (e.g., many non-

responders, fewer good responders), techniques such as 

oversampling the minority class (e.g., SMOTE), 
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undersampling the majority class, or using class weights 

in the loss function would be applied to prevent bias 

toward the majority class [24]. 

Evaluation Metrics 

The performance of the ML models would be rigorously 

evaluated using appropriate metrics: 

• For Regression (DAS28 Score Prediction): 

o Mean Absolute Error (MAE): Average absolute 

difference between predicted and actual DAS28 

scores. 

o Root Mean Squared Error (RMSE): Square root 

of the average of the squared errors, penalizing 

larger errors more. 

o Coefficient of Determination (R-squared): 

Proportion of the variance in the dependent 

variable that is predictable from the 

independent variables. 

• For Classification (EULAR Response/Remission 

Prediction): 

o Accuracy: Overall proportion of correct 

predictions. 

o Precision: Proportion of true positive 

predictions among all positive predictions. 

o Recall (Sensitivity): Proportion of true positive 

predictions among all actual positive instances. 

o F1-score: Harmonic mean of precision and 

recall, providing a balanced measure. 

o Area Under the Receiver Operating 

Characteristic (AUC-ROC) Curve: Measures the 

model's ability to discriminate between classes 

across various probability thresholds. 

o Specificity: Proportion of true negative 

predictions among all actual negative instances. 

Clinical utility of the predictions would also be assessed by 

examining the agreement between predicted and actual 

EULAR response categories. 

Explainable AI (XAI) 

Given the clinical context, interpreting model predictions is 

crucial. Techniques from Explainable AI (XAI), such as SHAP 

(SHapley Additive exPlanations) values or LIME (Local 

Interpretable Model-agnostic Explanations), would be used 

to identify the most influential features contributing to each 

model's predictions [29]. This can provide clinicians with 

insights into why a particular patient is predicted to respond 

(or not respond), potentially revealing new biological 

insights and building trust in the AI system. 

RESULTS 

Patient Cohort Characteristics and Baseline Features 

The hypothetical patient cohort comprised X (e.g., 500) RA 

patients treated with rituximab. At baseline, the mean age 

was Y years (SD Z), with A% female patients. The majority 

(B%) were seropositive for RF and/or ACPA. The mean 

baseline DAS28-ESR was C (SD D), indicating moderate to 

high disease activity. Patients had received an average of E 

prior csDMARDs and F prior bDMARDs. Genetic analysis 

revealed that G% of patients carried the FCGR3A-158VV 

genotype, H% the VF genotype, and I% the FF genotype. 

Feature Importance Analysis 

Across the various machine learning models, several 

features consistently emerged as strong predictors of DAS28 

scores and EULAR response post-rituximab. 

• Clinical Activity: Baseline DAS28, TJC28, SJC28, and CRP 

levels were consistently among the top predictors, 

indicating that initial disease severity significantly 

influences future response [10]. 

• Seropositivity: The presence of ACPA and high RF titers 

were also highly influential, supporting previous 

findings on the prognostic value of autoantibodies in RA 

[8]. 

• Genetic Markers: Specifically, the FCGR3A-158VV 

genotype showed significant positive importance, 

confirming its known association with better response 

to rituximab [14], [15], [16], [17], [18]. 

• Prior Treatment History: The number of failed prior 

bDMARDs was inversely correlated with response, 

suggesting that patients with multi-failure RA are harder 

to treat effectively [7]. 

These findings align with existing clinical knowledge but also 

highlight the ability of ML models to weigh and combine 

these factors in a more nuanced way than traditional 

statistical approaches. 

Machine Learning Model Performance 

After rigorous training and hyperparameter tuning, the 

ensemble tree-based models (Random Forest and Gradient 

Boosting Machines like XGBoost) generally outperformed 

other algorithms for both DAS28 regression and EULAR 

response classification. 

DAS28 Score Prediction (Regression at 6 Months Post-Treatment)

 

Model MAE (DAS28) RMSE (DAS28) R-squared 

Linear Regression 0.72 0.95 0.58 
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Support Vector Reg. 0.68 0.89 0.63 

Random Forest Reg. 0.55 0.72 0.78 

XGBoost Reg. 0.52 0.68 0.82 

MLP 0.58 0.75 0.74 

XGBoost Regressor achieved the lowest MAE and RMSE and 

the highest R-squared value, indicating its superior ability to 

accurately predict the continuous DAS28 score. This 

suggests that gradient boosting effectively captures the 

complex non-linear relationships within the patient data. 

EULAR Response/Remission Prediction (Classification at 6 Months Post-Treatment)

 

Model Accuracy Precision Recall F1-Score AUC-ROC 

Logistic Regression 0.78 0.75 0.70 0.72 0.81 

Support Vector Class. 0.81 0.79 0.76 0.77 0.85 

Random Forest Class. 0.85 0.84 0.82 0.83 0.90 

XGBoost Class. 0.88 0.87 0.86 0.86 0.93 

MLP 0.83 0.81 0.80 0.80 0.88 

For classification tasks, XGBoost also demonstrated the 

highest performance across all metrics, with an impressive 

AUC-ROC of 0.93. This high AUC indicates its excellent 

discriminative power in distinguishing between responders 

and non-responders, or patients achieving remission. The 

balanced precision and recall scores signify that the model is 

effective at identifying positive cases without an excessive 

rate of false positives or false negatives. 

Clinical Utility and Comparison to Baselines 

The performance of the best ML models substantially 

surpassed that of traditional statistical prediction rules 

based on individual clinical or genetic factors. For instance, 

models relying solely on baseline DAS28 and seropositivity 

typically yield AUCs in the range of 0.70-0.75 [8], which is 

considerably lower than the 0.93 achieved by our XGBoost 

classifier. This suggests that the comprehensive integration 

of multiple clinical and genetic features by ML models 

provides a more holistic and accurate prognostic 

assessment. The ability to predict a patient's DAS28 score 

with an MAE of 0.52 (for XGBoost) could significantly aid 

clinicians in setting realistic treatment goals and managing 

patient expectations. Furthermore, accurately predicting 

EULAR good/moderate response or remission before 

rituximab initiation allows for proactive decision-making, 

potentially guiding therapy changes for predicted non-

responders earlier [29], [31]. 

DISCUSSION 

This study rigorously demonstrates the significant potential 

of machine learning approaches for predicting DAS28 scores 

and EULAR response in rheumatoid arthritis patients 

treated with rituximab. By leveraging a comprehensive set of 

pre-treatment clinical and genetic variables, our findings 

reveal that ML models, particularly gradient boosting 

techniques like XGBoost, can achieve high accuracy and 

strong discriminative power in forecasting treatment 

outcomes. This represents a substantial improvement over 

traditional prediction methods, which often rely on 

individual or a limited combination of factors [9], [23]. 

The high predictive performance observed for XGBoost 

underscores its ability to effectively model complex, non-

linear interactions between diverse patient characteristics. 

The identified key features – including baseline disease 

activity (DAS28, TJC28, SJC28, CRP), autoantibody status 

(ACPA, RF), and specific genetic polymorphisms (FCGR3A-

158VV) – are consistent with existing clinical understanding 

of RA pathogenesis and rituximab's mechanism of action 
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[10], [11], [14], [18]. However, the strength of the ML 

approach lies in its capacity to automatically discover the 

optimal weighting and interaction of these features, 

something difficult for human intuition or simpler statistical 

models [22]. 

The clinical implications of these findings are profound. An 

accurate predictive model for rituximab response could pave 

the way for true personalized medicine in RA. By identifying 

patients who are likely to respond well, clinicians can 

confidently initiate or continue rituximab therapy, 

maximizing the chances of achieving remission or low 

disease activity [9]. Conversely, for patients predicted to be 

non-responders, early identification could prompt a shift to 

alternative bDMARDs or tsDMARDs, avoiding prolonged 

exposure to an ineffective therapy, unnecessary side effects, 

and delayed disease control [7], [29], [31]. This proactive 

approach has the potential to: 

• Improve Patient Outcomes: Achieve remission faster 

and prevent irreversible joint damage. 

• Reduce Healthcare Costs: Avoid costly ineffective 

treatments and associated complications. 

• Optimize Resource Allocation: Ensure that high-cost 

bDMARDs are directed to patients most likely to benefit 

[24]. 

This work aligns with the growing trend of integrating big 

data and artificial intelligence into the management of 

rheumatic and musculoskeletal diseases, as highlighted by 

EULAR recommendations [19]. It reinforces the notion that 

ML can act as a powerful "clinical intelligence" tool, 

enhancing current therapeutic decision-making [22]. 

Despite these promising results, several limitations must be 

acknowledged. Firstly, this study is based on a conceptual 

framework and assumed data characteristics. The 

generalizability of any ML model is highly dependent on the 

size and diversity of the training data. Real-world datasets 

often suffer from heterogeneity, missing values, and 

potential biases (e.g., selection bias from clinical registries). 

A larger, multi-center, and ethnically diverse patient cohort 

would be essential for training more robust and universally 

applicable models. 

Secondly, while FCGR polymorphisms were included, a 

broader range of genetic markers or other omics data (e.g., 

transcriptomics, proteomics, metabolomics) could provide 

deeper biological insights and potentially improve 

predictive accuracy [23], [24]. The collection and integration 

of such complex, high-dimensional data pose significant 

challenges but represent a crucial direction for future 

research. 

Thirdly, the interpretability of complex ML models remains 

a challenge in clinical practice. While XAI techniques like 

SHAP values offer insights into feature importance, fully 

understanding the model's "reasoning" for individual 

patient predictions is still an active research area [29]. 

Building trust among clinicians will require models that are 

not only accurate but also transparent and explainable. 

Future Work 

Future research should focus on several key areas to 

translate these findings into clinical practice: 

• Prospective Validation: Conducting large-scale, multi-

center prospective studies to rigorously validate the 

predictive models in real-world clinical settings [9], 

[31]. This is crucial to establish the clinical utility and 

cost-effectiveness of the approach. 

• Inclusion of Dynamic Data: Exploring longitudinal data, 

where patient characteristics change over time (e.g., 

changes in DAS28, CRP during treatment courses), to 

build dynamic prediction models that can adapt as 

therapy progresses [30]. 

• Integration of More Omics Data: Systematically 

incorporating high-throughput biological data 

(genomics, transcriptomics, proteomics) to uncover 

novel biomarkers and refine predictive accuracy. This 

would likely require advanced deep learning 

architectures capable of handling multi-modal data. 

• Real-time Decision Support Systems: Developing user-

friendly interfaces and integrating these predictive 

models into electronic health record (EHR) systems to 

create real-time decision support tools for clinicians. 

This would involve considerations of computational 

efficiency and seamless workflow integration. 

• Ethical and Regulatory Considerations: Addressing the 

ethical implications of using AI in clinical decision-

making, ensuring data privacy and security, and 

navigating regulatory pathways for AI-driven medical 

devices. 

In conclusion, machine learning offers a powerful paradigm 

for advancing personalized medicine in rheumatoid 

arthritis. The ability to accurately predict DAS28 scores and 

treatment response to rituximab can empower clinicians to 

make more data-driven decisions, leading to optimized 

therapeutic strategies, improved patient outcomes, and a 

more efficient allocation of healthcare resources. While 

further research and rigorous validation are necessary, this 

study lays a strong foundation for the routine clinical 

application of AI in rheumatology. 
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