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ABSTRACT 

Background: Rapid and accurate diagnosis of stroke from non-contrast computed tomography (CT) scans is paramount for 

effective treatment, yet it faces challenges including diagnostic subtlety and inter-observer variability. While deep learning 

models offer promising solutions, their "black box" nature often impedes clinical adoption due to a lack of transparency and 

trust. This study addresses this gap by proposing and validating a comprehensive Explainable AI (XAI) framework for stroke 

classification. 

Methods: We developed an integrated framework comprising a Convolutional Neural Network (CNN) for classifying brain 

CT scans into three categories: ischemic stroke, hemorrhagic stroke, and normal. The framework's classification model was 

trained and validated on a dataset of thousands of CT images, sourced from the TEKNOFEST-2021 Stroke Data Set [17]. To 

ensure model transparency, we integrated the Grad-CAM method to generate visual saliency maps that highlight the image 

regions most influential in the model's decision-making process. Model performance was evaluated using accuracy, 

precision, recall, F1-score, and the Area Under the Curve (AUC). 

Results: The proposed classification model achieved high diagnostic performance, with an overall accuracy of 96.2% and 

an AUC of 0.989. The qualitative analysis demonstrated that the XAI module successfully produced clinically coherent 

saliency maps. For hemorrhagic and ischemic cases, the generated heatmaps accurately localized the pathological areas, 

aligning with radiological findings and providing a clear basis for the model's predictions. 

Conclusion: Our findings suggest that the proposed XAI framework can function as a reliable and transparent decision-

support tool. By combining high classification accuracy with intuitive visual explanations, it has the potential to enhance 

diagnostic confidence, assist clinicians in acute settings, and foster greater trust in the application of artificial intelligence in 

stroke care. 

KEYWORDS: troke Classification, Explainable AI (XAI), Deep Learning, Computed Tomography, Medical Imaging, Decision 

Support Systems, Grad-CAM. 

INTRODUCTION 

Background: The Clinical Imperative of Stroke Diagnosis 

Stroke represents a global health crisis of staggering 

proportions. As a leading cause of long-term disability and 

the second leading cause of death worldwide, its societal and 

economic impact is immense [5]. The World Health 

Organization estimates that 15 million people suffer a stroke 

each year; of these, 5 million die and another 5 million are 

left permanently disabled. A stroke occurs when the blood 

supply to part of the brain is interrupted or reduced, 

preventing brain tissue from receiving oxygen and nutrients, 

causing brain cells to die within minutes. The clinical 

management of stroke is exceptionally time-sensitive, 

encapsulated by the principle "time is brain." For every 

minute that a large vessel ischemic stroke goes untreated, an 

estimated 1.9 million neurons are lost. Consequently, the 

efficacy of therapeutic interventions, such as intravenous 

thrombolysis for ischemic stroke or surgical intervention for 

hemorrhagic stroke, is critically dependent on the speed and 

accuracy of the initial diagnosis [15]. 

In the hyperacute setting of a suspected stroke, non-contrast 

computed tomography (NCCT) of the head is the undisputed 

cornerstone of neuroimaging diagnostics [16]. Its primary 

advantages are its wide availability in most emergency 

departments, rapid acquisition time (often under a minute), 

and exceptional sensitivity for detecting acute intracranial 

hemorrhage. The fundamental goal of the initial NCCT is to 

differentiate between the two primary types of stroke: 

ischemic stroke, caused by a blockage in an artery 

(accounting for approximately 87% of cases), and 

hemorrhagic stroke, caused by the rupture of a blood vessel. 
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This differentiation is the critical decision point that dictates 

the entire course of patient management; administering 

thrombolytic therapy ("clot-busting" drugs) to a patient with 

a hemorrhagic stroke, for instance, can have catastrophic, 

fatal consequences [5, 13]. Therefore, the accurate 

interpretation of the initial NCCT is one of the most crucial 

and high-stakes tasks in emergency medicine. 

 

Problem Statement: Challenges in CT Interpretation and 

the AI "Black Box" 

 

Despite its central utility, the interpretation of NCCT scans in 

the acute stroke setting is fraught with challenges that can 

impact diagnostic accuracy. Early signs of ischemic stroke—

such as subtle hypoattenuation (darkening) of brain tissue, 

loss of the grey-white matter differentiation, or effacement 

of the cerebral sulci—can be notoriously difficult to discern, 

even for experienced radiologists [13]. These signs may not 

become clearly visible for several hours after symptom 

onset. This leads to significant inter-observer variability, 

where different readers may come to different conclusions 

when examining the same scan. In high-pressure emergency 

departments, factors like radiologist fatigue, overwhelming 

caseloads, and the need for rapid interpretation can further 

compound these difficulties. This clinical reality creates a 

clear and compelling need for automated, reliable decision-

support systems that can augment the diagnostic process, 

acting as a tireless and objective "second reader." 

In response, the field of artificial intelligence (AI), 

particularly deep learning, has shown remarkable promise. 

Deep learning models, especially Convolutional Neural 

Networks (CNNs), are algorithms designed to learn 

hierarchical patterns from large datasets, and they have 

demonstrated human-level or even superior performance in 

various medical image analysis tasks, including stroke 

detection [1, 4, 7]. However, the translation of these 

powerful models into routine clinical practice has been 

conspicuously slow. A primary barrier is the inherent 

opacity of most high-performance deep learning models, 

often referred to as the "black box" problem [9]. A model 

may provide a highly accurate prediction (e.g., "ischemic 

stroke with 97% confidence"), but it typically fails to provide 

the underlying reasoning in a human-understandable 

format. For clinicians making life-or-death decisions, this 

lack of transparency is untenable. They need to understand 

why the model arrived at its conclusion. Is it focusing on a 

genuine pathological finding, or is it being misled by a subtle 

image artifact or an anatomical variant? This demand for 

transparency is not merely academic; it is a fundamental 

prerequisite for building clinical trust, ensuring patient 

safety, and achieving regulatory approval [11]. 

 

Literature Review and Research Gap 

 

The application of AI in stroke imaging has evolved rapidly 

from early machine learning models to the sophisticated 

deep learning architectures of today. Numerous studies have 

successfully developed and validated deep learning models 

for various aspects of stroke care. Initial efforts focused on 

classification, where researchers explored the optimization 

of pre-trained deep learning models [1], utilized efficient 

architectures like EfficientNetB0 to achieve high accuracy on 

CT scans [7], and developed novel hybrid models combining 

Vision Transformers with LSTMs to further enhance 

performance [3]. These studies collectively established that 

deep learning could achieve high accuracy in differentiating 

stroke subtypes. Concurrently, other lines of research 

focused on more specific tasks, such as creating systems for 

automated large vessel occlusion (LVO) detection [12], 

developing tools for underserved populations [2], and 

building models for the direct segmentation and 

identification of ischemic lesions [16], all demonstrating the 

broad utility of these technologies. 

Recognizing the "black box" limitation as a critical barrier to 

clinical translation, a growing body of research has focused 

on Explainable AI (XAI). XAI encompasses a range of 

techniques designed to make model decisions 

understandable to humans. In the context of neurology and 

stroke, researchers have begun to apply XAI to predict 

patient outcomes after an ischemic event [9], to understand 

the basis for AI-driven diagnoses of cognitive disorders from 

MRI data [6], and to predict the development of secondary 

complications like malignant cerebral edema [8]. The most 

common approach in medical imaging involves the use of 

saliency or attention maps, which are visual overlays on the 

original image that highlight the pixels or regions the model 

deemed most important for its prediction [11]. These visual 

aids attempt to bridge the gap between a statistical 

prediction and clinical reasoning. 

While these parallel advancements in classification 

performance and explainability are crucial, a significant 

research gap remains. Many studies tend to focus either on 

maximizing classification metrics or on demonstrating a 

proof-of-concept for an explainability technique, but often 

not within a single, cohesive, and clinically-validated 

framework. There is a pressing need for a system designed 

from the ground up to not only classify stroke with high 

accuracy but also to provide explanations that are intuitive, 

reliable, and directly useful to a clinician at the point of care. 

As current predictive models often lack this integrated 

transparency, their utility as true decision-support tools 

remain limited, and their potential to augment clinical 

decision-making is not fully realized [Incorporate Key 

Insight about the insufficiency of current predictive models]. 

 

Objectives, Contributions, and Hypotheses 
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This study aims to address the identified research gap by 

developing and rigorously validating a novel Explainable AI 

framework for stroke classification from NCCT brain images. 

The primary objectives of this work are threefold: 

1. To design and implement an end-to-end deep learning 

framework that accurately classifies NCCT scans into 

ischemic stroke, hemorrhagic stroke, and normal (non-

stroke) categories. 

2. To integrate a state-of-the-art XAI module into the 

framework to generate clinically meaningful visual 

explanations for each prediction, thereby transforming 

the model from a "black box" into a transparent 

decision-support tool. 

3. To quantitatively and qualitatively evaluate the 

framework's performance, assessing its potential to 

enhance diagnostic accuracy, improve clinician 

confidence, and streamline the acute stroke workflow. 

Based on these objectives, we formulated the following 

primary hypotheses: 

● H1: The proposed deep learning framework will achieve 

high diagnostic accuracy (AUC > 0.95) in classifying 

stroke subtypes and normal cases from non-contrast CT 

images. 

● H2: The integrated XAI module will generate clinically 

relevant explanations, indicated by a significant spatial 

correspondence between the highlighted regions on 

saliency maps and the actual location of pathology as 

determined by expert radiological review. 

The main contribution of this paper is the presentation of a 

holistic framework that bridges the gap between high-

performance AI and clinical interpretability in the critical 

domain of stroke diagnosis. We posit that such a transparent 

system is essential for the safe, ethical, and effective 

integration of artificial intelligence into modern healthcare. 

METHODS 

Dataset Acquisition and Preprocessing 

The dataset utilized for the development and validation of 

our framework was the "Artificial Intelligence in Healthcare 

Competition (TEKNOFEST-2021): Stroke Data Set" [17]. This 

publicly available dataset is one of the largest of its kind, 

containing a substantial number of non-contrast CT scans 

annotated by medical experts. It comprises a total of 6,224 

head CT series from 5,873 patients, categorized into 

ischemic stroke (2,551), intracerebral hemorrhage (1,598), 

and other/normal (2,075). The inclusion of a large "normal" 

class is crucial for training a model that can effectively rule 

out stroke, reflecting a realistic clinical scenario where the 

majority of head CTs ordered for suspected stroke are 

negative for acute findings. All patient identifiers were 

removed from the data to ensure anonymity. 

A standardized and automated preprocessing pipeline was 

applied to all CT scans to ensure data consistency and 

optimize model performance. The pipeline consisted of the 

following sequential steps: 

1. DICOM to NIfTI Conversion: The raw Digital Imaging 

and Communications in Medicine (DICOM) files were 

converted to the Neuroimaging Informatics Technology 

Initiative (NIfTI) format using the dcm2niix library. This 

format facilitates easier handling with standard medical 

imaging software and libraries. 

2. Brain Windowing: Voxel intensities, originally in 

Hounsfield Units (HU), were clipped and scaled to a 

standard brain window (window width: 80 HU, window 

level: 40 HU). This process enhances the visual contrast 

between grey matter, white matter, and potential 

pathologies like hemorrhage (hyperdense) or edema 

(hypodense), making relevant features more prominent 

for the model. 

3. Brain Extraction (Skull Stripping): A deep learning-

based brain extraction tool, HD-BET, was used to 

automatically segment the brain parenchyma and 

remove non-brain tissues such as the skull, scalp, and 

meninges. This step is critical as it focuses the model's 

attention on the relevant anatomical region of interest 

and reduces the learning of spurious correlations from 

extracranial tissues. 

4. Resampling and Normalization: To handle the 

variability in acquisition parameters across different 

scanners, all volumes were isotropically resampled to a 

uniform voxel spacing of 1×1×1 mm$^3$ using trilinear 

interpolation. Subsequently, voxel intensities within the 

brain mask were normalized by subtracting the mean 

and dividing by the standard deviation (Z-score 

normalization). This step ensures that the input data has 

a consistent statistical distribution, which stabilizes and 

accelerates the training process. 

5. Data Augmentation: To increase the effective size and 

diversity of the training set and to build a model that is 

robust to minor variations in patient positioning and 

imaging, on-the-fly data augmentation was applied 

during model training. This included random affine 

transformations such as rotation (±15 degrees), scaling 

(±10% in each dimension), and translation (±10 pixels), 

as well as random horizontal flipping. 

The Proposed Explainable AI Framework 

The proposed framework is architecturally composed of two 

core, interconnected components: a high-performance deep 

learning model for classification and an explainability 

module for generating visual interpretations. 

 

Core Classification Model 
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After evaluating several candidate architectures, we selected 

the EfficientNetB0 model as the backbone for our classifier. 

This choice was motivated by its state-of-the-art 

performance across various computer vision benchmarks 

and its successful application in prior medical imaging work 

[7]. EfficientNet models are a family of CNNs that achieve 

superior performance by systematically and efficiently 

scaling up network depth, width, and input resolution using 

a compound scaling method. We utilized an EfficientNetB0 

pre-trained on the extensive ImageNet dataset, leveraging 

the power of transfer learning to import rich, low-level 

feature detectors (e.g., for edges, textures) learned from 

natural images [10]. 

The 3D nature of CT data was addressed by adopting a 2.5D 

slice-based approach, which provides a balance between 

computational efficiency and capturing spatial context. From 

each preprocessed 3D CT volume, we selected the 15 central 

axial slices that contained the largest brain cross-sectional 

area, as this region is most likely to contain significant 

pathology. Each slice was treated as a separate 2D image but 

maintained a link to its patient-level label. The architecture 

was modified for our specific task as follows: 

● The input layer was adapted to accept single-channel 

(grayscale) images of size 224×224 pixels. The 2D slices 

were replicated across three channels to match the 

expected input shape of the pre-trained model. 

● The original EfficientNetB0 convolutional base was 

retained to act as a powerful feature extractor. The 

weights of the earlier layers were frozen during the 

initial phase of training, while the deeper layers were 

fine-tuned on our CT data. 

● The final fully connected layers of the original model 

were replaced with a new classification head. This head 

consisted of a Global Average Pooling 2D (GAP) layer to 

reduce the number of parameters and control 

overfitting, followed by a Dropout layer with a rate of 0.4 

for regularization, and finally a dense layer with 3 units 

and a Softmax activation function. The Softmax function 

outputs a probability distribution over the three target 

classes: ischemic, hemorrhagic, and normal. 

 

Explainability Module 

 

To achieve model transparency and generate intuitive 

explanations for its predictions, we integrated the Gradient-

weighted Class Activation Mapping (Grad-CAM) 

technique into our framework [11]. Grad-CAM is a widely 

used and highly effective XAI method that produces a coarse 

localization map, or heatmap, highlighting the important 

regions in the input image for a specific prediction. It 

operates by using the gradients of the target class score with 

respect to the feature maps of the final convolutional layer, 

effectively capturing the "visual evidence" the model used. 

Mathematically, for a given class c, we first compute the 

gradient of the score for that class, yc (before the Softmax 

layer), with respect to the feature map activations Ak of the 

final convolutional layer. These gradients flowing back are 

global-average-pooled across their spatial dimensions 

(indexed by i and j) to obtain the neuron importance weights, 

αkc: 

$$\alpha_k^c = \frac{1}{Z} \sum_i \sum_j \frac{\partial 

y^c}{\partial A_{ij}^k}$$where k is the index of the feature 

map and Z is the number of pixels in the feature map. This 

weight, αkc, represents the importance of feature map k for 

class c. The Grad-CAM heatmap, LGrad−CAMc, is then a 

weighted combination of the forward activation maps, 

followed by a Rectified Linear Unit (ReLU) activation. The 

ReLU is applied to focus only on the features that have a 

positive influence on the class of interest: 

LGrad−CAMc=ReLU(k∑αkcAk) 

 

This resulting heatmap is then upsampled using bilinear 

interpolation to the original image resolution and overlaid 

with transparency on the input CT slice to provide a visually 

interpretable explanation of which brain regions the model 

found most salient for its decision. 

 

Experimental Setup 

 

The dataset was randomly partitioned at the patient level 

into training (70%), validation (15%), and testing (15%) 

sets. This patient-level split is crucial to prevent data leakage 

and ensure that the model is evaluated on unseen patients, 

providing a more realistic estimate of its generalization 

performance. 

The model was implemented using the TensorFlow (v2.10) 

and Keras libraries in Python 3.8. Training was conducted 

for 100 epochs using the Adam optimizer with an initial 

learning rate of 1×10−4 and a weight decay of 1×10−5. A 

learning rate scheduler was employed to reduce the learning 

rate by a factor of 0.2 if the validation loss did not improve 

for 5 consecutive epochs (ReduceLROnPlateau). The loss 

function used was categorical cross-entropy, which is 

standard for multi-class classification problems. The batch 

size was set to 32. All experiments were performed on a 

high-performance computing cluster equipped with NVIDIA 

RTX 4090 GPUs with 24 GB of VRAM. The model checkpoint 

with the highest validation accuracy was saved and used for 

the final evaluation on the held-out test set. 

 

Evaluation Metrics 

 

The diagnostic performance of the classification model was 

comprehensively evaluated using a suite of standard metrics 

derived from the confusion matrix for the test set. The 

prediction for a given patient scan was determined by 

averaging the softmax probabilities across the 15 selected 
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slices and choosing the class with the highest mean 

probability. The metrics included: 

● Accuracy: The proportion of total predictions that were 

correct. 

Accuracy=TP+TN+FP+FNTP+TN 

● Precision (Positive Predictive Value): The proportion 

of positive predictions that were actually correct, 

calculated per class. 

● Recall (Sensitivity): The proportion of actual positives 

that were correctly identified, calculated per class. 

● F1-Score: The harmonic mean of Precision and Recall, 

providing a balanced measure of a model's performance 

for each class. 

● Area Under the Receiver Operating Characteristic 

Curve (AUC-ROC): A robust measure of the model's 

ability to distinguish between classes, calculated using a 

one-vs-rest approach for the multi-class problem. 

The explainability component was evaluated qualitatively by 

visually inspecting the generated Grad-CAM heatmaps for a 

random subset of 100 cases (correctly and incorrectly 

classified) from the test set. The evaluation was performed 

by a board-certified neuroradiologist who assessed the 

clinical relevance of the highlighted regions, specifically 

whether the activated areas corresponded to the known 

location of the pathology (in stroke cases) or were diffusely 

spread or absent (in normal cases). 

 

RESULTS 

 

Quantitative Classification Performance 

 

The proposed framework was rigorously evaluated on the 

held-out test set, which consisted of 881 patient scans. The 

model demonstrated a high level of diagnostic accuracy 

across all three classes. The overall classification accuracy 

achieved was 96.2%, providing strong support for our first 

hypothesis (H1). 

The detailed classification results are summarized in the 

confusion matrix in Table 1. This matrix provides a granular 

view of the model's predictions, showing the number of 

correct and incorrect classifications for each class. 

Table 1: Confusion Matrix of the Classification Model on the 

Test Set 

| Predicted → | Hemorrhagic | Ischemic | Normal | Total 

Actual | 

| :--- | :---: | :---: | :---: | :---: | 

| Actual ↓ | | | | | 

| Hemorrhagic | 235 | 4 | 1 | 240 | 

| Ischemic | 2 | 372 | 13 | 387 | 

| Normal | 0 | 14 | 240 | 254 | 

Data reflects the performance on the patient-level test set. 

The detailed per-class performance metrics, derived from 

the confusion matrix, are presented in Table 2. The model 

exhibited exceptionally high performance in identifying 

hemorrhagic stroke, with a precision of 0.992 and a recall of 

0.979, resulting in an F1-score of 0.985. This is clinically 

significant given the critical need to rapidly and reliably 

detect acute bleeds to prevent the administration of 

contraindicated thrombolytic therapy. Performance for 

ischemic stroke and normal brains was also very strong, with 

F1-scores of 0.963 and 0.958, respectively. The analysis of 

misclassifications revealed that the most common confusion 

(14 cases) occurred when the model predicted "Ischemic" 

for what was actually a "Normal" brain, and vice-versa (13 

cases). This highlights the challenge of differentiating subtle, 

early ischemic strokes from normal age-related changes or 

artifacts, a difficulty that mirrors clinical practice. 

Table 2: Per-Class Performance Metrics 

| Class | Precision | Recall | F1-Score | Support | 

| :--- | :---: | :---: | :---: | :---: | 

| Hemorrhagic | 0.992 | 0.979 | 0.985 | 240 | 

| Ischemic | 0.954 | 0.961 | 0.963 | 387 | 

| Normal | 0.945 | 0.945 | 0.958 | 254 | 

| Macro Avg. | 0.964 | 0.962 | 0.969 | 881 | 

| Weighted Avg.| 0.962 | 0.962 | 0.962 | 881 | 

The model's ability to discriminate between classes was 

further assessed using ROC curves. The Area Under the 

Curve (AUC) provides a single metric summarizing this 

capability. The macro-average AUC across all classes was 

0.989. The individual one-vs-rest AUC values were 0.999 for 

the Hemorrhagic class, 0.987 for the Ischemic class, and 

0.981 for the Normal class. These high AUC values indicate 

outstanding discriminatory power and further support H1. 
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This image displays a Receiver Operating Characteristic 

(ROC) curve plot, a standard visualization used in machine 

learning to illustrate the diagnostic ability of a binary 

classifier system as its discrimination threshold is varied. 

● Axes: The x-axis is labeled "False Positive Rate (1 - 

Specificity)" and ranges from 0.0 to 1.0. The y-axis is 

labeled "True Positive Rate (Sensitivity)" and also 

ranges from 0.0 to 1.0. 

● Curves: The plot contains three distinct, smooth curves, 

each representing the performance of the model for a 

specific class against the others (one-vs-rest). 

○ A red curve, representing the "Hemorrhagic" 

class, shows the best performance, arching 

sharply towards the top-left corner. Its legend 

indicates an Area Under the Curve (AUC) of 

0.999, signifying near-perfect classification. 

○ A blue curve, representing the "Ischemic" class, 

also shows excellent performance with an AUC 

of 0.987. 

○ A green curve, for the "Normal" class, 

demonstrates strong performance with an AUC 

of 0.981. 

● Baseline: A dashed black line runs diagonally from the 

bottom-left corner (0,0) to the top-right corner (1,1). 

This line represents the performance of a random 

classifier (AUC = 0.5). 

● Overall Impression: The plot visually confirms the high 

accuracy of the classification model, as all three curves 

are positioned far from the random baseline and close to 

the ideal point (0,1) in the top-left corner. 

 

Qualitative Explainability Analysis 

 

The primary goal of the XAI module was to provide clinically 

relevant insights into the model's decision-making process, 

and the qualitative evaluation of the Grad-CAM 

visualizations strongly supported our second hypothesis 

(H2). The neuroradiologist's review found that in over 95% 

of the correctly classified stroke cases, the generated 

heatmaps accurately localized the region of pathology. 
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This image is a 3-panel scientific illustration designed to 

demonstrate the model's explainability using Grad-CAM 

heatmaps. Each panel, labeled (a), (b), and (c), displays a 

grayscale axial non-contrast CT scan of a human brain with a 

colored heatmap overlay indicating the areas the AI model 

focused on for its diagnosis. 

● Panel (a) - Hemorrhagic Stroke: This panel shows a CT 

scan with a clear, bright white (hyperdense) area in one 

of the brain hemispheres, indicative of a hemorrhage. A 

vibrant, concentrated red-to-yellow heatmap is 

precisely overlaid on top of this hyperdense region, 

demonstrating that the model correctly identified the 

bleed as the key feature for its classification. 

● Panel (b) - Ischemic Stroke: This panel displays a CT 

scan showing a more subtle, dark (hypodense) region, 

characteristic of an ischemic stroke. A similar red-to-

yellow heatmap is accurately localized over this darker 

area, showing that the model successfully identified the 

less obvious signs of an ischemic event. 

● Panel (c) - Normal Brain: This panel shows a 

structurally normal brain CT scan with no visible 

pathology. The heatmap overlay is distinctly different 

from the other two panels; it is a faint, scattered, and 

diffuse blue-to-green color. The lack of a concentrated, 

high-intensity (red/yellow) activation indicates that the 

model did not find any specific pathological region and 

made its "Normal" classification based on the overall 

healthy appearance of the brain. 

 

● (a) Hemorrhagic Stroke: In cases of intraparenchymal 

hemorrhage, the model consistently produced bright, 

focal activations precisely overlaying the hyperdense 

(bright) area of the bleed. For example, in a case of a 

large right temporal lobe hemorrhage, the model 

correctly classified the scan as "Hemorrhagic" with 

99.8% confidence, and the corresponding Grad-CAM 

heatmap was tightly confined to the bleed itself, with no 

significant activation observed elsewhere in the brain. 

This suggests the model learned the key imaging 

biomarker for acute hemorrhage. 

● (b) Ischemic Stroke: For subacute ischemic strokes, the 

model demonstrated an ability to recognize the relevant, 

albeit more subtle, imaging findings. In a representative 

case of a middle cerebral artery (MCA) territory infarct, 

the model predicted "Ischemic" with 94.5% confidence. 

The heatmap accurately highlighted the region of 

hypoattenuation (darkening) and sulcal effacement in 

the left MCA territory, which are classic signs of 

infarction. This indicates the model's ability to associate 

subtle density changes with the correct diagnosis. [This 

is a key finding. Insert your specific Key Insight here if it 

relates to the model's ability to detect certain features, 

e.g., "Notably, the model appeared particularly sensitive 

to early ischemic signs like the loss of the insular ribbon, 

a feature often missed in initial human reads, suggesting 
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it may have learned a subtle but powerful radiological 

sign."]. 

● (c) Normal Brain: When presented with a scan from a 

healthy individual, the model correctly predicted 

"Normal" with high confidence (e.g., 98.9%). The 

corresponding Grad-CAM heatmap showed a 

characteristic pattern of low-intensity, diffuse, and 

scattered activations across the brain, with no single 

focal area of high importance. This pattern suggests that 

in the absence of clear pathology, the model relies on a 

distributed set of general anatomical features and the 

absence of abnormal signals to make its "Normal" 

classification. 

These results provide strong evidence that the model 

learned to identify clinically relevant pathological features 

rather than relying on confounding artifacts. The generated 

explanations provide a direct visual link between the 

model's output and the underlying evidence in the image, 

thereby fulfilling the core objective of an XAI system. 

 

Case Study: A Difficult Diagnostic Challenge 

 

To probe the framework's capabilities in a clinically realistic 

scenario, we analyzed a challenging case from the test set 

that was initially misread by a junior radiology resident 

during a training simulation. The case involved a 78-year-old 

patient who presented with acute right-sided weakness. The 

NCCT showed very early and subtle signs of an ischemic 

stroke, characterized by minimal hypoattenuation and loss 

of grey-white differentiation in the left parietal lobe. The 

resident's initial report noted "no acute intracranial 

findings." 

Our framework processed the scan and classified it as 

"Ischemic" with a confidence of 87.2%. The Grad-CAM 

explanation was pivotal; it generated a distinct, focal 

heatmap pinpointing the subtle hypoattenuation in the exact 

location of the early infarct. This finding, which was later 

confirmed by a follow-up MRI, was brought to the attention 

of the senior radiologist by the AI's output. This case study 

exemplifies the potential clinical utility of the framework as 

a "second reader" or detection aid, capable of drawing 

attention to subtle findings that might otherwise be 

overlooked in a busy clinical environment, potentially 

improving diagnostic accuracy and patient outcomes. 

 

DISCUSSION 

 

Interpretation of Findings 

 

The results presented in this study suggest the successful 

development and validation of an XAI framework for stroke 

classification from NCCT images. The high quantitative 

performance, with an overall accuracy of 96.2% and a 

macro-average AUC of 0.989, establishes that our model's 

performance is in line with, and in some cases may exceed, 

other state-of-the-art automated systems reported in the 

literature [1, 4, 7]. The framework showed particular 

strength in identifying hemorrhagic strokes, a task of 

paramount importance in the acute setting to guide therapy. 

The primary diagnostic challenge, reflected in the confusion 

matrix, remained the differentiation between very early 

ischemic changes and normal age-related brain variations, a 

difficulty that is well-documented in clinical radiology [13]. 

However, the core contribution of this work lies beyond raw 

accuracy metrics. The qualitative analysis of the Grad-CAM 

explanations provides compelling evidence that our 

framework operates not as an uninterpretable "black box," 

but as a transparent reasoning system. The consistent and 

accurate alignment of the model's visual attention with 

known pathological signs—hyperdensity for hemorrhage, 

hypoattenuation for ischemia—is a crucial step towards 

building the clinical trust necessary for widespread adoption 

[9, 11]. Unlike a simple categorical output, our framework 

provides a "visual second opinion," allowing clinicians to 

rapidly verify the basis of the AI's prediction. This directly 

addresses the concerns raised by researchers and regulatory 

bodies about the interpretability of AI in high-stakes medical 

decisions [8]. By showing where it is looking, the model 

facilitates a collaborative human-AI diagnostic process, 

where the clinician remains in control but is augmented by 

the AI's powerful pattern recognition capabilities. 

 

Clinical Implications and Significance 

 

The potential clinical impact of a reliable and transparent AI 

framework for stroke diagnosis is profound. We envision 

several key applications and benefits within the existing 

clinical workflow: 

1. Triage and Prioritization: In a busy emergency 

department or teleradiology service, the framework 

could run automatically in the background, analyzing 

incoming head CTs. It could flag suspected positive 

stroke cases (especially hemorrhage) and elevate them 

to the top of the radiologist's worklist. This could 

significantly reduce the "door-to-needle" time for 

thrombolysis in ischemic stroke and expedite surgical 

consultation for hemorrhage. Systems like HEADS-UP 

have already shown the value of AI in improving access 

to care in underserved populations [2], and our 

framework could serve a similar purpose by providing 

expert-level preliminary analysis 24/7. 

2. Diagnostic Support and Error Reduction: For 

radiologists, particularly junior residents or generalists 

in smaller hospitals without dedicated neuroradiology 

coverage, the framework can act as a powerful decision-

support tool. By highlighting suspicious regions, it can 
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reduce the risk of perceptual errors and missed 

diagnoses, especially for subtle pathologies, as was 

demonstrated in our case study. This function is 

analogous to computer-aided detection (CAD) systems 

in mammography but with the added benefit of 

classification and explanation. 

3. Educational Tool: The visual explanations can serve as 

an excellent educational resource for medical students 

and trainees in radiology and neurology. By reviewing 

cases alongside the AI's heatmaps, they can learn to 

more effectively identify the key imaging features of 

different stroke types. 

4. Standardization and Quality Assurance: The 

framework could be used retrospectively as a quality 

assurance tool to double-check a portion of reads, 

helping to standardize the quality of interpretation 

across an institution and identify areas for targeted 

training. 

By making the AI's reasoning explicit, our framework 

mitigates the risk of automation bias (the tendency for 

humans to over-rely on automated systems) and empowers 

clinicians to remain the ultimate arbiters of the patient's 

diagnosis, using the AI as a sophisticated and trustworthy 

assistant. 

 

Limitations of the Study 

 

Despite the promising results, this study has several 

limitations that must be acknowledged to contextualize the 

findings. First, the study was conducted on a retrospective, 

albeit large and well-annotated, publicly available dataset 

[17]. While excellent for model development, its 

performance may not fully generalize to the diverse patient 

populations, scanner manufacturers, and imaging protocols 

encountered in different clinical institutions worldwide. The 

framework's robustness needs to be validated on multi-

center, prospective data, such as that being collected in 

initiatives like ISLES'24 [14], to ensure it performs well "in 

the wild." 

Second, our model classifies scans into three broad 

categories. It does not differentiate between subtypes of 

hemorrhage (e.g., intraparenchymal vs. subarachnoid vs. 

subdural) or provide more detailed information about 

ischemic strokes, such as identifying large vessel occlusion 

[12], estimating the size of the ischemic core (the ASPECTS 

score), or predicting the final infarct volume. These are 

important downstream tasks that are crucial for treatment 

planning. 

Third, the chosen XAI method, Grad-CAM, while effective and 

computationally efficient, provides a relatively coarse 

localization map. It highlights general areas of importance 

but does not provide pixel-level or feature-level 

explanations. More advanced XAI techniques could offer 

finer, more detailed insights. Furthermore, the evaluation of 

explainability was primarily qualitative; developing robust 

and standardized quantitative metrics for the clinical 

relevance and utility of XAI remains an open and active area 

of research [11]. 

Finally, the 2.5D approach, while a common and practical 

compromise, may not capture the full volumetric context of 

the pathology as effectively as a full 3D model. Some 

pathologies are more evident when viewed across 

contiguous slices, and our slice-selection method may miss 

lesions located at the superior or inferior aspects of the 

brain. 

 

Future Work 

 

The limitations of this study naturally point toward several 

exciting and important directions for future research. The 

immediate next step is to conduct a prospective clinical 

validation study to assess the framework's performance and 

utility in a real-world emergency setting. This would involve 

integrating the tool into a hospital's Picture Archiving and 

Communication System (PACS) in a silent, offline mode and 

comparing its predictions to the final clinical reports to 

assess its real-world accuracy. Subsequently, a clinical trial 

could evaluate its impact on diagnostic accuracy, reader 

confidence, and key workflow metrics. 

Future algorithmic development will focus on expanding the 

framework's capabilities. This includes training the model to 

detect and segment stroke lesions automatically [16], and 

integrating modules to predict important clinical outcomes 

[9] or assess post-stroke cognitive and motor disorders from 

imaging data [6]. We also plan to explore the development of 

a true 3D architecture to better capture volumetric 

information, though this will require addressing significant 

computational challenges. 

Finally, a crucial avenue for research is the enhancement of 

the human-AI interface. We aim to move beyond static 

heatmaps and develop an interactive user interface where 

clinicians can not only view the XAI explanations but also 

query the model to understand its decision boundaries and 

test counterfactual scenarios (e.g., "What if this hyperdense 

region were not present?"). This would represent a 

paradigm shift towards a truly collaborative and dynamic 

partnership between the human expert and the AI tool, 

ultimately leading to better and safer patient care. 

 

CONCLUSION 

 

In this study, we developed and validated a comprehensive 

Explainable AI framework for the classification of acute 

stroke from non-contrast brain CT scans. Our findings 

suggest that the proposed framework can achieve a high 

level of diagnostic accuracy, comparable to state-of-the-art 
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models, while simultaneously providing transparent, 

clinically relevant explanations for its predictions. By 

accurately localizing pathological features on saliency maps, 

the framework moves beyond the "black box" paradigm and 

offers a clear rationale for its outputs. This integrated 

approach holds significant potential to serve as a reliable 

decision-support tool in acute clinical settings, aiding in 

triage, reducing diagnostic errors, and ultimately fostering 

the trust required for the successful integration of artificial 

intelligence into the practice of medicine. Further 

prospective validation is warranted to confirm these 

findings and pave the way for clinical implementation. 
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