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ABSTRACT 

The integration of neural and symbolic Artificial Intelligence (AI) offers a promising pathway toward achieving robust and 

generalized planning in robotics. While neural networks excel at perception and pattern recognition, symbolic AI 

contributes structured reasoning and interpretability. This paper explores a hybrid approach that combines neural 

perception modules with symbolic planning frameworks to enable robots to operate effectively in dynamic and partially 

observable environments. The study reviews recent advancements in neurosymbolic architectures for task generalization, 

real-time decision-making, and cross-domain adaptability. Emphasis is placed on bridging the gap between low-level 

sensory data and high-level abstract reasoning to support flexible, explainable, and scalable robotic behavior. The findings 

highlight the potential of integrated neural-symbolic systems to advance autonomous robotics in complex, real-world 

applications. 
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INTRODUCTION 

The field of robotics is undergoing a transformative period, 

driven by advancements in Artificial Intelligence (AI). 

Robots are increasingly expected to operate autonomously 

in complex, dynamic, and unstructured environments, 

requiring sophisticated planning capabilities that can adapt 

to novel situations, learn from experience, and reason about 

the world. Traditional robotic planning often relies on 

symbolic AI approaches, where knowledge is explicitly 

represented as facts and rules, enabling logical reasoning 

and robust decision-making in well-defined domains. 

However, these symbolic systems typically struggle with 

perception from raw, noisy sensor data and with 

generalizing to unforeseen circumstances or learning new 

skills without extensive manual programming. 

Conversely, neural networks and deep learning have 

revolutionized perception and control in robotics, excelling 

at tasks like object recognition, grasping, and low-level 

motor control by learning complex patterns directly from 

data. Yet, purely neural approaches often lack 

interpretability, struggle with logical consistency, and face 

significant challenges in tasks requiring abstract reasoning, 

long-term planning, and compositional generalization – 

abilities that are crucial for complex, multi-step robot tasks 

[6, 7]. For example, a neural network might learn to pick up 

a specific object but struggle to generalize this skill to a 

different object or integrate it into a broader task plan like 

"make breakfast." 

The limitations of both purely symbolic and purely neural 

paradigms in robotics have underscored the necessity for 

neurosymbolic AI. This emerging field seeks to bridge the 

gap between connectionist learning (neural networks) and 

symbolic reasoning (logical systems), aiming to combine 

their complementary strengths for more intelligent, robust, 

and generalizable robot behaviors [3]. The core motivation 

for neurosymbolic robotics is to create systems that can 

perceive the world through neural networks, reason about it 

using symbolic logic, and translate these insights into 

actionable plans for robots. This integration is particularly 

vital for generalized planning, where a robot must be able to 

adapt its planning strategies and execute tasks across a wide 

range of similar, yet distinct, scenarios without being 

explicitly reprogrammed for each one [6, 7]. This article 

explores the methodologies, advancements, and 

implications of applying neurosymbolic approaches to 

achieve robust generalized planning in AI-powered robotics, 
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paving the way for truly autonomous and adaptable 

intelligent agents. 

METHODS 

Neurosymbolic approaches in robotics aim to integrate 

perception, learning, and action planning by combining 

neural networks with symbolic reasoning systems. The 

methodologies employed are diverse, reflecting various 

ways these two paradigms can interact and exchange 

information to facilitate generalized planning. 

1. Conceptualizing Generalized Planning in Robotics 

Generalized planning for robots involves creating systems 

that can solve a family of related problems or adapt to new, 

unseen instances of a task without retraining or explicit 

reprogramming. This requires: 

• Abstraction: Ability to form abstract representations of 

the world, objects, and actions. 

• Compositionality: Capacity to combine basic skills or 

knowledge elements to form complex plans. 

• Transferability: Performance across different problem 

instances within a domain or even across similar 

domains. 

• Robustness: Ability to handle noisy sensory input and 

unexpected variations in the environment. 

2. Architectural Frameworks for Neurosymbolic 

Integration 

Various architectural paradigms are explored for integrating 

neural and symbolic components in robotic planning: 

• Sequential or Pipeline Architectures: This is one of the 

most straightforward integration methods, where 

neural networks and symbolic systems operate in a 

pipeline. 

o Neural Perception to Symbolic Representation: 

Neural networks process raw sensor data (e.g., 

images, point clouds) to extract symbolic 

representations (e.g., object types, their states, 

spatial relations). For instance, a neural 

network might identify objects and their 

properties, which are then fed as facts into a 

symbolic knowledge base or a planner [3]. 

o Symbolic Planning to Neural Execution: A 

symbolic planner generates a high-level plan (a 

sequence of abstract actions). Neural networks 

then translate these abstract actions into low-

level motor commands for robot execution, 

learning the mapping from abstract goals to 

continuous control signals [3]. 

o Neurosymbolic Predicators: Recent work 

proposes systems like VisualPredicator, which 

learn abstract world models using 

neurosymbolic predicates. This allows a neural 

module to predict the effects of actions in an 

abstract, symbolic space, which is then used by 

a symbolic planner to generate robust plans [2]. 

• Integrated/Hybrid Architectures: These approaches 

involve a tighter coupling where neural and symbolic 

components interact more directly and iteratively. 

o Neural Probabilistic Logic Programming: 

Frameworks like DeepProbLog combine neural 

networks with probabilistic logic programming. 

Neural networks can learn the probabilities of 

facts or rules from data (e.g., perceived object 

properties), which are then used by a 

probabilistic logic engine to perform uncertain 

reasoning and generate plans. This allows 

robots to handle noisy or incomplete sensory 

information while maintaining logical 

consistency [4]. 

o Learning Neuro-Symbolic Skills for Bilevel 

Planning: This involves a hierarchical approach 

where a high-level symbolic planner dictates 

abstract goals, and lower-level neural networks 

learn to achieve these goals by executing neuro-

symbolic skills. The neural networks might 

learn to map high-level symbolic states to 

appropriate actions, with symbolic constraints 

guiding the learning process [5]. 

o Symbolic Goal Decomposition with Language 

Models: Neurosymbolic language models can be 

used for fast and accurate task planning by 

leveraging multi-level goal decomposition. The 

language model generates high-level plans, 

which are then refined through symbolic 

reasoning, ensuring logical consistency and 

feasibility [8]. This also includes neuro-

symbolic natural language navigational 

planners that translate natural language 

instructions into robot actions [9]. 

• Feedback Loops and Self-Correction: Some advanced 

architectures incorporate feedback loops where the 

outcome of symbolic planning or robot execution 

informs the learning process of the neural components. 

This allows the system to learn from failures and refine 

its internal representations or rules. 

3. Knowledge Representation and Learning 

• Symbolic Knowledge Base: Explicit representation of 

objects, their properties, relations, and action 

preconditions/effects (e.g., using PDDL or first-order 

logic). This knowledge provides the foundation for 

symbolic reasoning and planning. 

• Neural Embeddings for Symbolic Concepts: Neural 

networks can learn vector embeddings for symbolic 



FEAIML, (2025)                                                                                                                                                               
 

  

https://irjernet.com/index.php/feaiml 10 

 

entities and relations, allowing reasoning in a 

continuous space. These embeddings capture semantic 

similarities and can facilitate generalization. 

• Learning Abstract Predicates: Neural networks can be 

trained to learn the truth values of abstract predicates 

(e.g., IsClear(BlockA)) directly from visual or sensory 

input, effectively bridging the gap between raw data and 

symbolic concepts [2]. 

4. Training and Evaluation 

• Supervised Learning: Training neural components with 

labeled data for perception tasks (e.g., object detection, 

state estimation). 

• Reinforcement Learning: Training agents to learn 

policies that map states to actions, often guided by 

symbolic rewards or constraints [6]. 

• Imitation Learning: Learning from expert 

demonstrations, where a human demonstrates a task, 

and the robot learns to replicate it. 

• Evaluation Metrics: Beyond standard robotic metrics 

(e.g., task success rate, execution time), neurosymbolic 

systems are also evaluated on their: 

o Generalization to Novelty: Performance on 

unseen problem instances or variations of a 

task. 

o Interpretability: Ability to explain the reasoning 

behind a plan or decision, often through logical 

derivations. 

o Robustness: Performance under noisy or 

uncertain conditions. 

The methodologies in neurosymbolic robotics are designed 

to harness the strengths of both neural and symbolic AI, 

moving towards more capable and understandable 

autonomous systems for generalized planning. 

RESULTS AND APPLICATIONS 

The application of neurosymbolic approaches to generalized 

planning in AI-powered robotics has yielded compelling 

results, demonstrating significant advancements in 

capabilities that were previously challenging for purely 

neural or symbolic systems. 

1. Enhanced Generalization and Adaptability 

One of the most significant outcomes is the improved ability 

of robots to generalize across varying task instances and 

environments. 

• Transfer of Skills: Neurosymbolic systems allow for the 

learning and transfer of abstract skills and knowledge. 

Instead of learning a specific sequence of low-level 

motor commands for each task, a robot can learn 

symbolic actions or predicates that can be composed to 

solve new problems [2, 5]. For instance, if a robot learns 

the symbolic predicate IsGrasped(Object) from visual 

input, it can apply this knowledge to grasp different 

objects in various settings, leading to more generalized 

grasping capabilities. 

• Robustness to Novelty: By leveraging symbolic 

reasoning, robots can infer general rules and constraints 

that hold true across different scenarios, making them 

more robust to unseen variations in the environment or 

task parameters. This contrasts with purely neural 

systems which might fail catastrophically when 

encountering out-of-distribution data. For example, a 

neurosymbolic planner might use symbolic rules to 

identify obstacles in new environments, allowing it to 

avoid collisions without re-training its perception 

system for every new obstacle type. 

• Multi-level Goal Decomposition: Neurosymbolic 

language models have shown promise in quickly and 

accurately decomposing high-level goals into a series of 

actionable sub-goals, which is crucial for complex, multi-

step tasks in robotics. This multi-level decomposition 

allows robots to handle diverse and complex 

instructions, enhancing their task planning capabilities 

[8]. 

2. Improved Interpretability and Transparency 

Neurosymbolic integration addresses the "black-box" 

problem of deep learning by providing human-interpretable 

explanations for robot behavior and planning decisions. 

• Logical Tracing of Plans: The symbolic component in 

neurosymbolic planners can generate plans as 

sequences of logical actions, making the robot's high-

level intentions and reasoning process transparent [3]. 

A human operator can inspect these symbolic plans to 

understand why the robot chose a particular sequence of 

actions to achieve a goal. 

• Explanations for Perceptual Decisions: When neural 

networks learn to extract symbolic predicates from raw 

data (e.g., IsRed(Object) or IsHeavy(Object)), the system 

can explain its perceptual classifications in human-

understandable terms, bridging the gap between raw 

sensor data and abstract reasoning [2]. 

• Constrained Task Planning: The integration of symbolic 

logic allows for reasoning about constraints, and 

neurosymbolic systems can explain why certain actions 

are not taken or why particular states are unreachable 

due to violated constraints [10]. This provides a clearer 

understanding of the planning process and potential 

limitations. 

3. Enhanced Learning Efficiency and Data Efficiency 

Neurosymbolic frameworks can often learn more efficiently 

and from less data than purely neural approaches. 
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• Prior Knowledge Integration: Pre-existing symbolic 

knowledge (e.g., physics laws, domain constraints) can 

be directly incorporated, guiding the learning process of 

neural networks and reducing the need for extensive 

data collection. This reduces the search space for neural 

learning. 

• Learning Abstract Skills: Instead of learning every low-

level detail, neurosymbolic systems can learn abstract 

skills that are generalizable across different contexts, 

requiring fewer training examples for each specific task 

instance. Learning neuro-symbolic skills for bilevel 

planning is a key example of this [5]. 

• Faster Plan Generation: By abstracting away low-level 

details and performing reasoning at a symbolic level, 

some neurosymbolic planners can generate plans much 

faster than purely reactive neural policies, especially for 

complex, long-horizon tasks. 

4. Applications in AI-Powered Robotics 

These advancements translate into concrete applications: 

• Autonomous Navigation and Exploration: Robots can 

learn to navigate complex environments, identify 

landmarks symbolically, and plan paths that respect 

both geometric and semantic constraints. Neuro-

symbolic natural language navigational planners are 

particularly relevant here [9]. 

• Human-Robot Collaboration: Improved interpretability 

facilitates more intuitive and trustworthy human-robot 

interaction, as humans can better understand the 

robot's intentions and provide guidance or correction at 

an abstract level [3]. 

• Complex Manipulation Tasks: Robots can perform multi-

step manipulation tasks requiring reasoning about 

object properties, spatial relations, and action effects, 

such as assembling products or performing household 

chores. 

• Robust Adaptation in Unstructured Environments: 

Robots can adapt to changes in their environment or 

unexpected events by combining learned perceptual 

patterns with symbolic re-planning capabilities. 

These results underscore that neurosymbolic AI is not just a 

theoretical concept but a practical approach enabling robots 

to achieve higher levels of intelligence, autonomy, and 

explainability, crucial for their effective deployment in real-

world scenarios. 

DISCUSSION 

The integration of neural networks and symbolic AI 

represents a pivotal advancement for generalized planning 

in robotics. As demonstrated by the promising results, 

neurosymbolic frameworks are successfully addressing 

fundamental limitations inherent in purely connectionist or 

purely symbolic approaches. The ability to generalize across 

varying task instances, interpret robot decisions, and learn 

efficiently from data are transformative capabilities that 

pave the way for more intelligent and autonomous robotic 

systems. 

The core strength of neurosymbolic AI in robotics lies in its 

capacity to handle the "perception-to-action" gap more 

effectively. Neural networks excel at extracting meaningful, 

sub-symbolic features from noisy, high-dimensional sensor 

data—a critical first step for any autonomous agent. 

Subsequently, symbolic reasoning systems can operate on 

these learned abstractions to perform logical inference, plan 

sequences of actions, and maintain long-term coherence, 

addressing the limitations of neural networks in abstract 

reasoning and compositionality. This synergistic approach 

leads to robots that are not only capable of complex tasks but 

also able to explain their rationale, fostering greater trust 

and facilitating human-robot collaboration [3]. The 

emergence of neurosymbolic predicates for learning 

abstract world models is a particularly powerful 

development, allowing neural perception to directly feed 

into symbolic planning [2]. 

Furthermore, the enhanced generalization capabilities are 

crucial for deploying robots in dynamic, real-world 

environments. Instead of requiring extensive retraining for 

every minor variation in a task or environment, 

neurosymbolic robots can leverage learned symbolic 

knowledge to adapt their behavior, leading to more robust 

and versatile systems. This is particularly relevant for 

generalized planning, where the aim is to create systems that 

can solve entire families of problems rather than just 

individual instances. The efficiency gains in learning, often 

requiring less data due to the integration of prior symbolic 

knowledge or the learning of abstract skills, also contribute 

to making advanced robotic systems more feasible to 

develop and deploy. 

Despite these significant advancements, several challenges 

remain in the widespread adoption and further development 

of neurosymbolic AI for generalized planning in robotics: 

• Scalability of Symbolic Reasoning: As robotic tasks 

become more complex, the symbolic state space can 

grow exponentially, posing scalability challenges for 

traditional symbolic planners. Optimizing symbolic 

inference within neurosymbolic frameworks is an 

ongoing area of research. 

• Robustness of Perception-to-Symbolic Mapping: The 

neural component's ability to accurately translate raw 

sensor data into reliable symbolic representations is 

critical. Errors in this translation can propagate through 

the symbolic reasoning pipeline, leading to planning 

failures. Handling ambiguity and uncertainty in 

perception remains a significant hurdle. 

• Interoperability and Communication: Developing 

seamless and efficient communication interfaces 

between diverse neural network architectures and 
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symbolic reasoning engines is complex. Ensuring that 

information flows effectively and without loss between 

the sub-symbolic and symbolic layers is paramount. 

• Learning Abstract Concepts Automatically: While 

neurosymbolic systems can leverage pre-defined 

symbolic knowledge, the automatic discovery and 

refinement of new, useful abstract concepts and rules 

from robot experience remains a difficult problem. 

• Real-time Performance: For many robotic applications, 

real-time planning and execution are essential. The 

computational overhead of integrating multiple AI 

paradigms can sometimes hinder real-time 

performance, necessitating efficient implementations. 

• Benchmarking and Evaluation: Establishing 

standardized benchmarks and metrics that effectively 

evaluate the unique capabilities of neurosymbolic 

systems (e.g., generalization across domains, 

interpretability, robustness to noise) is crucial for 

driving progress in the field. 

Future Directions 

The field of neurosymbolic AI for generalized planning in 

robotics is ripe for further innovation: 

1. Deep Integration and Joint Learning: Developing more 

tightly integrated, end-to-end differentiable 

neurosymbolic architectures that allow for joint 

optimization of both neural and symbolic components. 

This could involve novel neural modules that directly 

learn symbolic operations or logic-constrained neural 

networks. 

2. Adaptive Knowledge Representation: Researching 

methods for robots to autonomously learn, refine, and 

adapt their symbolic knowledge bases based on their 

experiences in the world, moving beyond static, pre-

programmed knowledge. 

3. Human-Robot Interaction via Neurosymbolic AI: 

Further exploring how neurosymbolic AI can facilitate 

more natural and effective human-robot collaboration, 

allowing humans to provide high-level symbolic 

instructions and receive interpretable explanations 

from robots. 

4. Uncertainty Quantification and Robustness: 

Incorporating robust mechanisms for dealing with 

uncertainty at both the perceptual and symbolic levels, 

enabling robots to reason and plan effectively in highly 

uncertain real-world environments. 

5. Long-Term and Hierarchical Planning: Developing 

neurosymbolic frameworks that can support truly long-

term, hierarchical planning over extended time 

horizons, breaking down complex goals into 

manageable sub-goals across multiple levels of 

abstraction. 

6. Application to Complex Real-World Domains: Applying 

these advanced neurosymbolic systems to increasingly 

complex real-world robotic applications, such as 

autonomous manufacturing, disaster response, and 

personalized healthcare, where robust generalized 

planning is indispensable. 

CONCLUSION 

Neurosymbolic AI represents a critical frontier for achieving 

robust generalized planning in AI-powered robotics. By 

strategically integrating the strengths of deep learning for 

perception and low-level control with the logical rigor of 

symbolic reasoning for high-level planning and abstract 

understanding, these hybrid frameworks are overcoming 

the inherent limitations of isolated AI paradigms. The 

demonstrated capabilities in enhanced generalization, 

improved interpretability, and more efficient learning 

underscore the transformative potential of this field. While 

challenges related to integration complexity, scalability, and 

automated knowledge acquisition persist, the vibrant 

research landscape is actively addressing these issues. The 

continued evolution of neurosymbolic robotics promises to 

usher in an era of more intelligent, autonomous, and 

transparent robots, capable of navigating and performing 

complex tasks in the dynamic and unpredictable 

environments of the real world. 
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