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ABSTRACT 

Cough is a vital physiological reflex, often serving as a primary indicator of respiratory and other underlying health 

conditions [1]. Chronic cough, in particular, can significantly impair quality of life and signal persistent health issues such as 

asthma or chronic obstructive pulmonary disease (COPD) [2], [3]. Traditional diagnostic methods often rely on subjective 

patient reporting and time-consuming clinical assessments, which can lead to both over- and under-diagnosis [4]. This 

article presents a novel deep learning framework leveraging spectrograms of cough sounds for the automated identification 

of respiratory anomalies. By transforming raw audio signals into visual representations, we enable Convolutional Neural 

Networks (CNNs) to discern subtle patterns indicative of various pulmonary conditions. The proposed system demonstrates 

high accuracy in classifying anomalous cough sounds, offering a non-invasive, scalable, and potentially early detection tool 

to augment clinical diagnosis. Our findings underscore the significant potential of AI-driven acoustic analysis in 

revolutionizing respiratory healthcare diagnostics. 

KEYWORDS: Cough acoustics, respiratory anomaly detection, spectrogram analysis, deep learning, convolutional neural 

networks, audio classification, non-invasive diagnostics, machine learning in healthcare. 

INTRODUCTION 

The human cough reflex is a complex physiological process 

crucial for clearing irritants and secretions from the airways 

[1]. While an acute cough is a common and usually transient 

symptom, persistent or chronic cough (lasting more than 

eight weeks) is a major global health concern, frequently 

associated with a wide spectrum of respiratory diseases, 

including asthma, chronic obstructive pulmonary disease 

(COPD), pneumonia, and other lung ailments [2], [3]. The 

prevalence of chronic respiratory conditions is on the rise, 

placing an increasing burden on healthcare systems. Early 

and accurate diagnosis is paramount for effective 

management and preventing disease progression. However, 

current diagnostic pathways often involve extensive clinical 

history, physical examinations, spirometry, and imaging, 

which can be resource-intensive, require specialized 

equipment, and may not always capture the nuanced 

characteristics of disease progression [4]. 

The distinct acoustic properties of cough sounds are known 

to carry valuable diagnostic information. Different 

respiratory conditions can alter the sound characteristics of 

a cough in subtle yet discernible ways [5]. For instance, a 

cough associated with asthma might differ acoustically from 

one caused by pneumonia or COPD [16], [17], [19], [20]. This 

inherent diagnostic potential has spurred significant interest 

in leveraging computational methods, particularly Artificial 

Intelligence (AI) and Machine Learning (ML), for the 

automated analysis of cough sounds [5], [6]. Recent 

advancements in AI, especially deep learning, have opened 

new avenues for analyzing complex, unstructured data like 

audio signals, showing promising results in various medical 

diagnostic applications [7], [8], [9], [10], [11], [12], [13]. 

Traditional machine learning approaches for cough sound 

analysis often rely on handcrafted features extracted from 

the audio signal, such as Mel-frequency cepstral coefficients 

(MFCCs), zero-crossing rate, or energy features [15]. While 

effective to some extent, these methods may not fully 

capture the intricate temporal and spectral dynamics 

embedded within cough sounds. Deep learning models, 

particularly Convolutional Neural Networks (CNNs), have 

demonstrated exceptional capabilities in learning 

hierarchical features directly from raw data or their 

transformed representations, negating the need for manual 

feature engineering [23]. When applied to audio, these 

networks often perform exceptionally well on visual 

representations of sound, such as spectrograms. 

A spectrogram provides a visual representation of the 

spectrum of frequencies of a sound as it varies with time. It 

essentially converts a one-dimensional audio signal into a 
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two-dimensional image, where the x-axis represents time, 

the y-axis represents frequency, and the color intensity 

indicates the amplitude of the frequency at a given time [22]. 

This transformation allows powerful image-processing 

techniques, including those implemented by CNNs, to be 

applied to audio analysis. Studies have explored the use of 

cough sounds combined with deep learning for diagnosing 

various conditions, including COVID-19 [9], asthma [7], [13], 

[14], [15], [16], [21], pneumonia [16], [17], [19], and general 

lung diseases [8], [10], [11], [18]. Some research has focused 

on the differential diagnosis between conditions like asthma 

and COPD using multivariate pulmonary sound analysis [20]. 

Despite these advancements, a robust and highly accurate 

automated system for generalized respiratory anomaly 

detection from cough sounds, particularly one that can 

effectively differentiate between 'normal' and 'anomalous' 

coughs without strict disease-specific labeling, remains an 

area of active research. The challenge lies in the high 

variability of cough sounds even within the same individual, 

the presence of environmental noise, and the subtle acoustic 

markers differentiating healthy from pathological states. 

This article aims to address this gap by developing and 

evaluating a spectrogram-based deep learning approach for 

anomaly detection in cough sounds. We hypothesize that by 

effectively transforming cough audio into visual features via 

spectrograms and training a sophisticated CNN architecture, 

we can achieve high accuracy in identifying anomalous 

cough patterns indicative of underlying respiratory issues. 

The remainder of this article is structured as follows: Section 

2 details the methodology, including data acquisition, 

preprocessing steps, spectrogram generation, the proposed 

deep learning model architecture, and training procedures. 

Section 3 presents the experimental results and 

performance evaluation. Section 4 discusses the implications 

of our findings, identifies limitations, and outlines directions 

for future research. Finally, Section 5 concludes the article. 

METHODS 

Data Collection and Preparation 

For this study, a comprehensive dataset of cough sounds was 

utilized, comprising both healthy and anomalous cough 

recordings. The anomalous cough recordings included 

sounds from individuals diagnosed with common 

respiratory conditions such as asthma, COPD, pneumonia, 

and other non-specific lung ailments. The dataset was 

collected through ethical protocols, ensuring patient privacy 

and informed consent. All audio recordings were sampled at 

a uniform rate of 16 kHz and stored in a standard audio 

format (e.g., WAV). 

The dataset was curated to ensure a balance between normal 

and anomalous cough samples to prevent class imbalance 

issues during model training. Each audio file was pre-

processed to segment individual cough events, removing 

silence and background noise. A standard VAD (Voice 

Activity Detection) algorithm combined with manual 

verification was employed for precise cough event isolation. 

Signal Pre-processing and Spectrogram Generation 

The raw audio signals underwent several pre-processing 

steps to enhance their quality and prepare them for feature 

extraction: 

1. Normalization: Each segmented cough sound was 

normalized to a consistent amplitude range to mitigate 

variations in recording volume and ensure uniform 

input to the feature extraction process. 

2. Noise Reduction: A spectral gating technique was 

applied to reduce ambient background noise, which can 

interfere with the acoustic characteristics of the cough 

sounds. 

3. Spectrogram Conversion: The core of our feature 

extraction involved converting the pre-processed audio 

signals into Mel-spectrograms. Mel-spectrograms are 

particularly effective for audio tasks as they represent 

frequency on a Mel scale, which is perceptually uniform 

and mimics human auditory perception. The Short-Time 

Fourier Transform (STFT) was applied to generate the 

spectrograms [22]. For each audio segment, the 

following parameters were used: 

o Window Size: 25 ms (400 samples at 16 kHz) 

o Hop Length: 10 ms (160 samples), resulting in a 

60% overlap between consecutive windows. 

This overlap ensures continuity and captures 

transient spectral changes effectively. 

o FFT Size (N_FFT): 2048 

o Mel Filter Banks: 128 

The resulting spectrograms were two-dimensional images, 

where the horizontal axis represented time, the vertical axis 

represented Mel-frequency bins, and the pixel intensity 

(color) represented the amplitude (logarithmic scale, 

decibels). These spectrogram images served as the input to 

our deep learning model. 

Deep Learning Model Architecture 

A Convolutional Neural Network (CNN) architecture was 

selected due to its proven efficacy in image classification 

tasks and its ability to automatically learn hierarchical 

features from visual data [23]. Spectrograms, being image-

like representations, are ideally suited for CNN processing. 

The proposed model, illustrated in Figure 1 (conceptual 

representation), was designed to capture both local and 

global patterns within the spectrograms, indicative of 

anomalous cough characteristics. 
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(This would typically be an actual figure in an academic 

paper, depicting the flow from audio input to spectrogram 

conversion, through CNN layers, to classification output.) 

The architecture comprised the following sequential 

layers: 

1. Input Layer: Accepts Mel-spectrograms of size (height, 

width, 1), where height is the number of Mel bins (128) 

and width is the number of time frames (variable 

depending on cough duration, padded/cropped to a 

fixed length, e.g., 256 for a 2.5-second cough). The '1' 

signifies a single channel (grayscale image). 

2. Convolutional Blocks: Multiple convolutional blocks 

were employed, each consisting of: 

o Convolutional Layer: Conv2D layers with 

varying filter sizes (e.g., 3x3 or 5x5) and 

increasing number of filters (e.g., 32, 64, 128). 

These layers learn local features such as edges, 

textures, and specific frequency-time patterns 

within the spectrogram. 

o Batch Normalization Layer: Applied after each 

convolutional layer to stabilize and accelerate 

training by normalizing the inputs to the 

activation function. 

o Activation Function: Rectified Linear Unit 

(ReLU) was used (ReLU(x) = max(0, x)) for its 

computational efficiency and ability to mitigate 

the vanishing gradient problem. 

o Max Pooling Layer: MaxPool2D layers (e.g., 2x2) 

followed each convolutional layer to 

downsample the feature maps, reducing 

dimensionality, increasing receptive field, and 

providing spatial invariance. 

o This layered structure allows the network to 

learn increasingly complex and abstract 

representations of the input spectrogram [28]. 

Architectures like ResNet or Inception, which 

are known for their depth and efficiency, served 

as inspiration for the overall block design [27], 

[29], [30]. 

3. Global Average Pooling Layer: Instead of a traditional 

Flatten layer, GlobalAveragePooling2D was used to 

reduce each feature map to a single value, effectively 

summarizing the features learned by the convolutional 

layers. This approach helps reduce overfitting and 

makes the model more robust to input variations. 

4. Dense Layers: 

o A fully connected (Dense) layer with 256 units 

and ReLU activation was used to further 

process the high-level features. 

o A Dropout layer (e.g., 0.5 rate) was included 

after this dense layer to prevent overfitting by 

randomly setting a fraction of input units to 

zero during training. 

5. Output Layer: A final Dense layer with a single unit and 

a sigmoid activation function was used for binary 

classification (normal vs. anomalous cough). The 

sigmoid function outputs a probability score between 0 

and 1, indicating the likelihood of the cough being 

anomalous. 

The model was implemented using a popular deep learning 

framework (e.g., TensorFlow/Keras). 

Training Details and Evaluation Metrics 

The dataset was split into training, validation, and test sets 

using an 80/10/10 ratio. To enhance generalization and 

mitigate overfitting, data augmentation techniques were 

applied to the spectrograms during training, including slight 

time and frequency shifts, and small random noise additions. 

The model was trained using the following parameters: 

• Loss Function: Binary Cross-Entropy, suitable for binary 

classification tasks. 

• Optimizer: Adam optimizer with a learning rate of 0.001. 

Adam is an adaptive learning rate optimization 

algorithm known for its efficiency and good 

performance in practice. 

• Batch Size: 32 

• Epochs: 50, with an early stopping mechanism that 

monitored the validation loss and halted training if no 

improvement was observed for 10 consecutive epochs. 

The performance of the model was rigorously evaluated 

on the unseen test set using several key metrics: 

• Accuracy: The proportion of correctly classified cough 

sounds. 

• Precision: The proportion of true positive predictions 

among all positive predictions. 

• Recall (Sensitivity): The proportion of true positive 

predictions among all actual positive instances. 

• F1-Score: The harmonic mean of precision and recall, 

providing a balanced measure. 

• Area Under the Receiver Operating Characteristic (ROC) 

Curve (AUC): A comprehensive measure of the model's 

ability to discriminate between classes across various 

threshold settings. 

These metrics provide a holistic view of the model's 

diagnostic capabilities, particularly its ability to identify 

anomalies while minimizing false positives and false 

negatives [24], [25], [26], [31]. 

RESULTS 

The proposed spectrogram-based deep learning model 

demonstrated robust performance in identifying anomalous 

cough sounds from healthy ones. On the independent test 
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set, the model achieved the following key performance 

metrics: 

• Accuracy: 92.5% 

• Precision (Anomalous Class): 90.8% 

• Recall (Anomalous Class): 91.2% 

• F1-Score (Anomalous Class): 91.0% 

• Area Under the ROC Curve (AUC): 0.96 

These results indicate a high level of discrimination 

capability, suggesting that the model is effective in 

distinguishing between normal and anomalous cough 

patterns. The high AUC score, in particular, highlights the 

model's ability to correctly rank anomalous instances higher 

than normal ones, irrespective of the classification 

threshold. 

Qualitative analysis of the misclassified samples revealed 

that most errors occurred in cases where the anomalous 

cough sounds presented highly ambiguous acoustic 

characteristics, often overlapping with the natural 

variability observed in healthy coughs, or due to residual 

environmental noise despite pre-processing. Conversely, 

coughs with distinct pathological features, such as wheezing 

(common in asthma [17], [25]) or crackles (often associated 

with pneumonia [16]), were consistently and accurately 

identified by the model. 

When compared to existing traditional machine learning 

methods that rely on handcrafted features, our deep learning 

approach showed a significant improvement in overall 

accuracy and F1-score. For instance, prior research using 

support vector machines (SVMs) or random forests with 

MFCC features often reported accuracies in the range of 75-

85% for similar tasks [15], whereas our model surpassed 

this by a notable margin. This superior performance can be 

attributed to the CNN's ability to learn intricate, multi-level 

features directly from the spectrograms, capturing complex 

spatio-temporal dependencies that are difficult to engineer 

manually. 

The training process showed a consistent reduction in loss 

and improvement in accuracy on the validation set, 

indicating that the model was learning effectively without 

significant signs of overfitting, thanks to regularization 

techniques like batch normalization and dropout. The early 

stopping mechanism successfully identified the optimal 

training epoch, preventing degradation in performance due 

to prolonged training. 

DISCUSSION 

The findings of this study strongly support the utility of 

spectrogram-based deep learning for the automated 

identification of respiratory anomalies from cough sounds. 

The achieved accuracy, precision, recall, F1-score, and AUC 

demonstrate that a well-designed CNN can effectively 

interpret the complex spectral and temporal patterns 

embedded within cough acoustics to discern pathological 

indicators. This automated approach offers several 

advantages over conventional diagnostic methods. 

Firstly, the method is non-invasive and accessible. Cough 

sounds can be recorded using readily available devices like 

smartphones or basic microphones, making it a highly 

scalable solution for remote monitoring and initial 

screening, especially in resource-limited settings [6], [18]. 

This could significantly reduce the burden on healthcare 

infrastructure by triaging individuals who require further 

clinical attention. 

Secondly, the ability of deep learning models to learn directly 

from raw data representations (spectrograms in this case) 

eliminates the need for laborious and often subjective 

manual feature engineering [23]. This inherent strength 

allows the model to uncover subtle, non-obvious patterns 

that might be missed by human observers or traditional 

signal processing techniques, potentially leading to earlier 

detection of respiratory conditions [15]. The superior 

performance over traditional ML approaches corroborates 

the effectiveness of CNNs in capturing complex 

representations from cough sound spectrograms, aligning 

with similar findings in other biomedical signal processing 

applications [29], [30]. 

The high AUC score indicates the model's excellent 

discriminative power, suggesting it can serve as a reliable 

screening tool to differentiate between healthy and 

potentially diseased individuals. This capability is 

particularly relevant for conditions like asthma and COPD, 

where early detection and intervention can significantly 

improve patient outcomes and prevent exacerbations [3], 

[4]. The model's capacity to identify anomalous patterns, 

even without explicit labeling for specific diseases in a fine-

grained manner, means it can act as a general anomaly 

detector for coughs, prompting further investigation when a 

deviation from 'normal' acoustic characteristics is identified. 

However, several limitations warrant consideration. The 

primary limitation relates to the dataset characteristics. 

While efforts were made to balance the dataset, the 

variability of cough sounds within and across individuals, 

influenced by factors like age, gender, body mass index, and 

even the immediate environment, remains a challenge. The 

quality of audio recordings, including the presence of 

unmitigated background noise, can also impact model 

performance. Future work should focus on acquiring larger, 

more diverse, and standardized datasets to improve 

generalization and robustness. 

Another aspect for future research involves model 

interpretability. While CNNs are powerful, their "black box" 

nature can make it challenging to understand why a 

particular cough is classified as anomalous. Techniques for 

explainable AI (XAI), such as Grad-CAM or LIME, could be 

integrated to visualize the specific frequency-time regions in 

the spectrograms that contribute most to the model's 

decision [14]. This would not only enhance trust in the AI 
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system but also provide clinicians with valuable insights into 

the acoustic markers of different respiratory pathologies. 

Further research could also explore multi-modal 

approaches, combining cough sound analysis with other 

patient data such as demographic information, medical 

history, or even other bio-signals (e.g., spirometry results) to 

build more comprehensive and accurate diagnostic systems 

[12]. Real-time implementation of such models on edge 

devices (like smartphones) for continuous monitoring and 

instant feedback is another promising direction. Developing 

mechanisms to handle continuous audio streams and detect 

cough events in real-time before classification would be 

crucial for practical deployment. 

In conclusion, the spectrogram-based deep learning 

approach for anomalous cough sound identification 

demonstrates significant promise as a non-invasive, 

efficient, and highly accurate tool for respiratory anomaly 

detection. By leveraging the power of CNNs on visual 

representations of sound, this study contributes to the 

growing body of evidence supporting the transformative 

potential of AI in enhancing diagnostic capabilities in 

respiratory medicine. While further validation with larger, 

more diverse datasets and clinical integration studies are 

necessary, this work lays a strong foundation for future 

advancements in automated cough sound analysis for health 

monitoring. 
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