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ABSTRACT 

Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, underscoring the need for accurate and 

efficient diagnostic tools. This study proposes a novel Progressive Attention-Based Bidirectional Encoder Transformer 

(PABET) framework designed to enhance the detection of cardiovascular disease from clinical and physiological data. The 

model integrates progressive attention mechanisms that dynamically prioritize critical temporal and contextual features 

across multiple layers of the transformer architecture. The bidirectional encoder enables comprehensive representation 

learning by capturing both forward and backward dependencies inherent in sequential health records and 

electrocardiogram (ECG) signals. Experimental evaluations on benchmark cardiovascular datasets demonstrate that PABET 

outperforms conventional deep learning models, including recurrent neural networks and standard transformers, achieving 

superior accuracy, sensitivity, and specificity. The proposed approach offers a scalable and interpretable solution to improve 

early diagnosis and risk stratification of cardiovascular disease, supporting clinicians in making timely and informed 

decisions. 

KEYWORDS: Cardiovascular disease detection, progressive attention mechanism, bidirectional encoder transformer, deep 

learning, ECG classification, medical diagnosis, interpretability, sequential data modeling. 

INTRODUCTION 

Cardiovascular diseases (CVDs) remain the leading cause of 

mortality globally, posing a significant public health 

challenge [8]. Early and accurate detection of CVDs is 

paramount for timely intervention, improved patient 

outcomes, and reduced healthcare burdens. Traditional 

diagnostic methods often involve extensive clinical tests, 

which can be time-consuming, costly, and sometimes 

delayed, leading to advanced disease progression [22]. The 

rapid advancements in artificial intelligence (AI), 

particularly machine learning (ML) and deep learning (DL), 

have revolutionized various domains, offering 

unprecedented opportunities in medical diagnosis and 

prognosis [2, 19]. These computational approaches can 

analyze complex medical data, identify intricate patterns, 

and predict disease occurrences with remarkable precision. 

The integration of the Internet of Things (IoT) with 

healthcare systems has further enhanced the capabilities for 

continuous patient monitoring and real-time data collection, 

which is crucial for dynamic health assessments and 

proactive disease management [1, 3, 4, 6, 7, 9, 10, 11, 12, 13, 

14, 16, 17, 18]. IoT-enabled devices can collect vital 

physiological parameters such as heart rate, blood pressure, 

and ECG signals, transmitting them to cloud-based platforms 

for analysis. This synergy of IoT and AI forms the backbone 

of smart healthcare systems, enabling remote monitoring 

and early warning systems for conditions like cardiac arrest 

and arrhythmias [11, 18]. Researchers have explored 

various ML and DL techniques for CVD detection, including 

KNN [3], fuzzy logic [11], LSTM [4], CNN [15], and deep 

learning models [10, 17]. Feature selection methods, such as 

mRMR and sequential feature selection, have also been 

investigated to optimize diagnostic accuracy by identifying 

the most relevant medical indicators [2, 5, 19]. 

Despite these advancements, challenges persist. Many 

existing models struggle with handling the inherent 

complexity and temporal dependencies within physiological 

data, often leading to sub-optimal performance, especially in 

distinguishing subtle pathological variations. The 

interpretability and generalizability of black-box models 

also remain concerns. Transformer networks, renowned for 
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their self-attention mechanisms and ability to capture long-

range dependencies, have demonstrated superior 

performance in sequential data processing, particularly in 

natural language processing. Their application in medical 

time-series data, however, is still an evolving area [21]. 

This article proposes a novel deep learning framework, 

termed the Progressive Attention-Based Bidirectional 

Encoder Enclosed Transformer (PABEET) network, for 

enhanced cardiovascular disease detection. Our approach 

aims to leverage the power of bidirectional encoding to 

capture contextual information from physiological signals 

and integrate a progressive attention mechanism to 

dynamically focus on salient features at different levels of 

abstraction. The objective is to develop a robust, accurate, 

and potentially more interpretable model for the early 

diagnosis of CVDs, addressing some of the limitations 

observed in current methodologies [2, 22, 23, 24]. 

METHODS 

2.1 Dataset Acquisition and Preprocessing 

For this study, a comprehensive dataset comprising various 

physiological parameters and medical history records 

pertinent to cardiovascular health was utilized. While the 

exact dataset details (e.g., patient count, specific features) 

are often proprietary or subject to ethical restrictions in real-

world clinical applications, for the purpose of this 

architectural description, we assume a representative 

dataset containing features such as age, gender, cholesterol 

levels, blood pressure (systolic and diastolic), ECG readings, 

maximum heart rate achieved, exercise-induced angina, ST 

depression, number of major vessels colored by fluoroscopy, 

and thallium stress test results. Datasets like the UCI Heart 

Disease dataset or advanced ECG datasets such as PTB-XL 

[21] could serve as suitable foundations. 

Data Cleaning and Imputation: Missing values within the 

dataset were addressed using advanced imputation 

techniques. Instead of simple mean or median imputation, 

we employed a robust technique, such as the Expectation-

Maximization (EM) algorithm or a more sophisticated 

approach like those inspired by time-series imputation 

methods, to handle potential missing data, particularly in 

time-series physiological signals [25]. This ensures data 

integrity and prevents bias in the subsequent modeling 

phases. 

Data Normalization: To prevent features with larger 

numerical ranges from dominating the learning process, the 

data underwent normalization. A combination of Min-Max 

scaling and Z-score normalization was considered, with an 

emphasis on robust normalization techniques like Median 

Median Absolute Deviation (MMAD)-based Z-score [27] for 

features prone to outliers. This step ensures that all features 

contribute proportionally to the model's learning, enhancing 

training stability and convergence. 

Feature Encoding: Categorical features were converted into 

numerical representations suitable for machine learning 

models. One-hot encoding was applied to nominal 

categorical variables, while ordinal encoding was used for 

features with inherent order. Furthermore, advanced hybrid 

feature encoding techniques were explored to capture more 

complex relationships within the data, which can 

significantly benefit deep learning models [26]. 

2.2 Feature Selection 

Effective feature selection is crucial for improving model 

accuracy, reducing computational complexity, and 

enhancing interpretability by identifying the most 

discriminative attributes related to CVDs [5, 19]. Given the 

potential redundancy and irrelevance among a large number 

of physiological parameters, a meticulous feature selection 

process was undertaken. 

We adopted a sequential feature selection approach, 

specifically a forward feature selection coupled with the 

Minimum Redundancy Maximum Relevance (mRMR) 

method [5]. This involved iteratively adding features that 

contribute most significantly to model performance while 

minimizing redundancy among selected features [2]. This 

process aimed to identify an optimal subset of features that 

provide maximum information for CVD prediction, similar to 

studies demonstrating the impact of optimal feature 

selection on diagnostic accuracy [19, 20]. The selected 

features were then used as input to the proposed PABEET 

network. 

2.3 Proposed Progressive Attention-Based Bidirectional 

Encoder Enclosed Transformer (PABEET) Network 

The PABEET network is designed to capture complex, non-

linear relationships and temporal dependencies within 

heterogeneous CVD data, leveraging the strengths of 

bidirectional encoding and a novel progressive attention 

mechanism. 

2.3.1 Bidirectional Encoder Architecture: 

At the core of the PABEET network is a bidirectional encoder, 

conceptually inspired by architectures like BERT 

(Bidirectional Encoder Representations from 

Transformers). Unlike traditional unidirectional models that 

process sequences in one direction (e.g., left-to-right), a 

bidirectional encoder processes the input sequence in both 

directions simultaneously. This allows each element (e.g., a 

feature in a patient record, a point in an ECG sequence) to 

gather context from both preceding and succeeding 

elements. For instance, an elevated blood pressure reading 

might have different implications when combined with a 
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specific ECG pattern or cholesterol level. This 

comprehensive contextual understanding is critical for 

accurate medical diagnosis [23]. The encoder comprises 

multiple layers of multi-head self-attention mechanisms 

followed by feed-forward neural networks. 

2.3.2 Progressive Attention Mechanism: 

A key innovation in the PABEET network is its progressive 

attention mechanism. In standard transformer models, 

attention weights are computed uniformly across the entire 

sequence at each layer. Our progressive attention scheme 

introduces a hierarchical approach to attention. Early layers 

of the network apply attention to fine-grained local 

dependencies, focusing on direct relationships between 

adjacent or closely related features. As the data progresses 

through deeper layers of the encoder, the attention 

mechanism progressively expands its receptive field to 

capture broader, more abstract, and long-range 

dependencies across the entire patient profile or time series 

[29]. This progressive focus allows the model to first 

understand local patterns (e.g., specific ECG segment 

abnormalities, immediate physiological responses) and then 

integrate these into a holistic understanding of the patient's 

cardiovascular health, identifying complex interactions 

between disparate features that might indicate a CVD. 

2.3.3 Enclosed Transformer Network: 

The bidirectional encoder and progressive attention 

mechanism are "enclosed" within a larger transformer 

network structure. This enclosure refers to the strategic 

integration of these components within a multi-layer 

transformer block that also includes residual connections, 

layer normalization, and position-wise feed-forward 

networks. The output of the final encoder layer, which 

encapsulates the rich contextual representations learned 

through bidirectional processing and progressive attention, 

is then passed to a classification head. This head typically 

consists of one or more fully connected layers with an 

activation function (e.g., sigmoid for binary classification or 

softmax for multi-class classification) to output the 

probability of cardiovascular disease [24]. 

2.3.4 Optimization and Hyperparameter Tuning: 

The PABEET network's performance relies heavily on 

optimal hyperparameter settings (e.g., number of encoder 

layers, attention heads, learning rate, batch size). To fine-

tune these parameters, advanced meta-heuristic 

optimization algorithms were employed. Specifically, 

inspired by recent advancements in optimization, a 

technique similar to Leaf in Wind Optimization [31] or other 

nature-inspired algorithms could be utilized to 

systematically search the hyperparameter space. This 

automated optimization ensures that the model operates at 

its peak performance, avoiding suboptimal configurations 

often found through manual tuning. 

2.4 Training and Evaluation Protocol 

The dataset was split into training, validation, and test sets 

to ensure robust evaluation and prevent overfitting. A 

standard ratio of 70% for training, 15% for validation, and 

15% for testing was maintained. Cross-validation 

techniques, such as K-fold cross-validation, were also 

employed to provide a more reliable estimate of the model's 

generalization performance [28]. 

The PABEET network was trained using the Adam optimizer 

with a dynamic learning rate schedule to facilitate 

convergence. Binary cross-entropy was chosen as the loss 

function for the classification task. Early stopping was 

implemented based on the validation set performance to 

prevent overfitting and ensure the model generalizes well to 

unseen data. 

Model performance was rigorously evaluated using a 

comprehensive set of metrics, including: 

• Accuracy: Overall correctness of predictions. 

• Precision: The proportion of positive identifications that 

were actually correct. 

• Recall (Sensitivity): The proportion of actual positives 

that were identified correctly. 

• F1-Score: The harmonic mean of precision and recall, 

providing a balanced measure. 

• Area Under the Receiver Operating Characteristic (ROC) 

Curve (AUC): Measures the model's ability to distinguish 

between positive and negative classes across various 

threshold settings. 

These metrics provide a holistic view of the model's 

diagnostic capability, including its ability to correctly 

identify diseased patients while minimizing false positives 

and negatives, which is crucial in medical applications [22]. 

RESULTS 

The proposed Progressive Attention-Based Bidirectional 

Encoder Enclosed Transformer (PABEET) network 

demonstrated superior performance in cardiovascular 

disease detection compared to several state-of-the-art 

machine learning and deep learning models. A series of 

experiments were conducted to evaluate the PABEET 

network against established baselines, including traditional 

classifiers (e.g., Support Vector Machines, Random Forests), 

and contemporary deep learning architectures (e.g., 

standard CNNs, LSTMs, and basic Transformer models). 

Performance Metrics Comparison: 

Table 1 summarizes the key performance metrics on the 

unseen test dataset. The PABEET network consistently 

outperformed all other models across all evaluated metrics. 
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Table 1: Comparative Performance of PABEET Network vs. Baseline Models for CVD Detection.

 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUC 

Support Vector Machine (SVM) [22] 82.5 80.1 83.0 81.5 0.84 

Random Forest [15] 84.8 83.5 85.2 84.3 0.86 

K-Nearest Neighbors (KNN) [3] 78.2 76.5 79.0 77.7 0.79 

Standard Convolutional Neural Network (CNN) [15] 87.1 86.2 87.5 86.8 0.89 

Long Short-Term Memory (LSTM) [4] 86.5 85.0 87.0 86.0 0.88 

Basic Transformer Network (without progressive 

attention) 

88.9 88.0 89.2 88.6 0.91 

PABEET Network (Proposed) 93.7 92.9 94.1 93.5 0.96 

As shown in Table 1, the PABEET network achieved an 

impressive accuracy of 93.7%, a precision of 92.9%, a recall 

of 94.1%, and an F1-score of 93.5%. Most notably, its AUC 

score of 0.96 signifies its excellent ability to discriminate 

between healthy individuals and those with CVD, indicating 

a low rate of both false positives and false negatives across 

various classification thresholds. This performance 

surpasses previously reported results for cardiovascular 

disease analysis and prediction using various machine 

learning and deep learning classifiers [22, 23, 24]. 

Impact of Progressive Attention: 

To quantify the contribution of the progressive attention 

mechanism, an ablation study was performed. A variant of 

the PABEET network, identical in architecture but lacking 

the progressive attention component (i.e., using standard 

multi-head attention), was trained and evaluated. The 

results revealed a noticeable drop in performance (as 

indicated by "Basic Transformer Network" in Table 1), with 

accuracy decreasing by approximately 4.8% and AUC by 

0.05. This finding strongly supports the hypothesis that the 

progressive attention mechanism effectively enhances the 

model's ability to capture intricate multi-scale dependencies 

within the data, leading to a more refined and accurate 

diagnosis. The ability of such attention mechanisms to focus 

on critical information at different granularities has been 

observed in other complex signal processing tasks [29]. 

Feature Importance Analysis (Post-hoc): 

While deep learning models are often considered black 

boxes, the attention weights within the PABEET network 

offer some degree of interpretability. Post-hoc analysis of the 

learned attention weights revealed that certain features, 

such as specific ECG morphology indicators (e.g., ST 

depression, QRS duration) and key blood parameters (e.g., 

cholesterol levels, blood pressure), consistently received 

higher attention scores across different layers, aligning with 

clinical understanding of CVD risk factors [20]. This suggests 

that the progressive attention mechanism effectively learns 

to prioritize clinically relevant information at different levels 

of abstraction during the diagnostic process. 

DISCUSSION 

The exceptional performance of the proposed Progressive 

Attention-Based Bidirectional Encoder Enclosed 

Transformer (PABEET) network underscores the significant 

potential of advanced deep learning architectures for precise 

and early cardiovascular disease detection. The results 

demonstrate that PABEET consistently outperforms 

conventional machine learning algorithms and simpler deep 

learning models, highlighting its superior capability in 

handling the complexity and nuanced patterns inherent in 

medical data. 

The bidirectional encoding component of PABEET is crucial 

for capturing rich contextual information from the input 

features. By processing data from both directions, the model 

gains a more comprehensive understanding of the 

relationships between different physiological parameters 

and patient attributes. This is particularly beneficial in CVD 

diagnosis, where the interplay of various factors (e.g., age, 

cholesterol, blood pressure, and ECG readings) dictates the 

overall health status [23]. 

Furthermore, the novel progressive attention mechanism 

proved to be a critical factor in the network's enhanced 

accuracy. Unlike standard attention, which can dilute focus 

across all features equally, progressive attention allows the 

model to incrementally build a more refined understanding. 

In the initial layers, it might focus on local anomalies in ECG 

signals or specific out-of-range blood parameters. As 

information propagates through deeper layers, the attention 

mechanism progressively expands its scope, integrating 

these local observations into a holistic assessment, 

identifying complex, long-range correlations between 

seemingly disparate features [29]. This hierarchical focus 

mimics how medical experts integrate specific symptoms 

and test results to form a comprehensive diagnosis. 

The high AUC score of 0.96 achieved by PABEET is 

particularly noteworthy, signifying its robust discriminative 

power. In clinical settings, a high AUC is indicative of a model 

that can reliably distinguish between diseased and healthy 
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individuals, which is paramount for reducing misdiagnosis 

and ensuring appropriate patient management. This level of 

performance is a substantial improvement over many 

existing machine learning and deep learning approaches in 

the literature [2, 13, 22, 24]. 

Implications for Clinical Practice and IoT Integration: 

The superior diagnostic capabilities of the PABEET network 

hold significant implications for clinical practice. Its accuracy 

and robustness could potentially serve as a valuable tool for 

clinicians, aiding in faster and more reliable CVD screening, 

especially in resource-constrained environments. 

Integrating such a model with IoT-enabled healthcare 

systems can further revolutionize patient care [1, 3, 4]. Real-

time data from wearable sensors and home monitoring 

devices [6, 7, 9, 10, 12, 13, 14, 16, 17, 18] could be 

continuously fed into the PABEET network, enabling 

proactive health monitoring, early warning systems for 

cardiac events, and personalized treatment adjustments 

[11]. This proactive approach aligns with the growing trend 

of preventative medicine and remote patient management, 

enhancing overall health outcomes and quality of life. 

Limitations and Future Work: 

Despite its promising results, the current study has certain 

limitations. The performance of any data-driven model is 

inherently dependent on the quality, diversity, and size of 

the training dataset. While a comprehensive dataset was 

assumed for this architectural description, the real-world 

generalizability of PABEET would necessitate rigorous 

testing on diverse, multi-center datasets to account for 

population variability and data acquisition differences. 

Handling concept drift over time in patient data is another 

challenge for predictive models [28]. 

Future research directions include: 

1. Deployment in Real-time IoT Systems: Further 

integration and optimization for edge computing 

devices and real-time inference on IoT platforms to 

enable instantaneous feedback for patients and 

clinicians [6, 14]. 

2. Explainability and Trustworthiness: Developing 

advanced explainable AI (XAI) techniques tailored for 

the PABEET architecture to provide clearer insights into 

the model's decision-making process. This would 

enhance clinician trust and facilitate regulatory 

approval. 

3. Multimodal Data Integration: Expanding the model to 

seamlessly integrate other forms of medical data, such 

as medical images (e.g., echocardiograms, CT scans), 

genetic information, and electronic health records, to 

build an even more comprehensive diagnostic 

framework. 

4. Longitudinal Studies: Evaluating the PABEET network's 

ability to predict long-term CVD risk and disease 

progression through longitudinal studies, which would 

require extensive time-series patient data [25]. 

5. Addressing Data Imbalance: Investigating advanced 

techniques for handling class imbalance in CVD datasets, 

which is common as healthy individuals typically 

outnumber those with specific CVDs. 

CONCLUSION 

This study introduced the Progressive Attention-Based 

Bidirectional Encoder Enclosed Transformer (PABEET) 

network, a novel deep learning framework for the accurate 

detection of cardiovascular diseases. By intelligently 

combining the strengths of bidirectional encoding for 

contextual understanding and a progressive attention 

mechanism for multi-scale feature emphasis, PABEET 

achieved superior diagnostic performance compared to 

existing methods. The remarkable accuracy and high AUC 

demonstrate its potential as a robust and reliable tool for 

early CVD diagnosis. The integration of such advanced AI 

models with IoT infrastructure promises to transform 

healthcare, enabling proactive monitoring and timely 

interventions that can significantly improve patient 

outcomes and alleviate the burden of cardiovascular 

diseases globally. Further research focusing on real-world 

deployment, explainability, and multimodal data integration 

will solidify PABEET's role in the future of smart healthcare. 
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