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ABSTRACT 
 

Accurate forecasting of international raw material trade flows is critical for effective policy-making, strategic supply chain 
management, and mitigating risks in an increasingly volatile global economy characterized by polycrises and supply chain 
disruptions. Traditional forecasting methods, while valuable, often struggle to capture the complex temporal dynamics 
and interplay of diverse influencing factors. This article explores the application of the Temporal Fusion Transformer 
(TFT), a state-of-the-art deep learning model, for achieving high-accuracy predictions of international raw material trade 
flows. We outline a conceptual framework for utilizing the TFT, highlighting its ability to leverage multiple time series 
inputs, incorporate static and dynamic exogenous variables, and provide interpretable insights into the drivers of trade. 
By comparing its potential performance against established models like ARIMA, Prophet, LSTM, and Graph Neural 
Networks (GNNs), we demonstrate the theoretical advantages of the TFT for this challenging forecasting task. The 
discussion emphasizes the implications of improved forecasting accuracy for enhancing resilience in global value chains 
and navigating turbulent times. While acknowledging data requirements and model complexity, this article posits that 
the Temporal Fusion Transformer represents a significant advancement in the toolkit for predicting international raw 
material trade, offering both enhanced accuracy and crucial interpretability. 

Keywords: International Trade Forecasting, Raw Materials, Temporal Fusion Transformer, Time Series Analysis, Deep 
Learning, Supply Chain Resilience, Global Value Chains, Interpretable AI. 

 

INTRODUCTION 

International trade in raw materials forms the backbone 

of global manufacturing and economic activity. The 

reliable flow of these essential resources is vital for 

industrial production, infrastructure development, and 

overall economic stability. However, forecasting 

international trade flows, particularly for raw materials, 

is a complex endeavor influenced by a myriad of factors 

including geopolitical events, economic policies, 

technological shifts, supply and demand dynamics, and 

environmental considerations [10, 11, 13, 14, 15]. The 

current era, often described as a "polycrisis," 

characterized by interconnected global risks and 

uncertainties, further exacerbates the challenge of 

accurate prediction [10, 11, 12, 14]. Disruptions to global 

value chains have highlighted the vulnerability of 

economies dependent on stable raw material supplies [9, 

15, 16]. 

Traditional economic models, such as the gravity model, 

have been foundational in explaining bilateral trade 

flows based on factors like economic size and 

geographical distance [4, 23, 24, 25, 26]. While providing 

valuable structural insights, these models are often static 

or less adept at capturing high-frequency temporal 

dynamics and the impact of sudden shocks. Time series 

forecasting methods like Autoregressive Integrated 

Moving Average (ARIMA) [2, 27, 30, 31, 32] and Prophet 

[3, 28, 29, 33, 34] have been widely applied to trade data, 

offering robust approaches for capturing historical 

patterns and seasonality. More recently, deep learning 

models, including Long Short-Term Memory (LSTM) 

networks [5, 52] and Graph Neural Networks (GNNs) [35, 

36, 37, 38, 39, 40, 53], have shown promise in modeling 

the complex, non-linear relationships and network 

structures inherent in global trade [5, 35, 36, 37, 38, 39, 40, 

41, 42]. 

Despite these advancements, accurately predicting 

international raw material trade flows with high precision 

remains a significant challenge. The need for models that 

can effectively integrate diverse data sources (temporal, 

static, and exogenous), capture long-range dependencies, 

and provide interpretable insights into the drivers of 

forecasts is paramount for navigating the current 

turbulent global economic climate [10, 11, 12, 14, 15]. 

The Temporal Fusion Transformer (TFT) [46] is a novel 

deep learning architecture specifically designed for multi-

horizon time series forecasting. It combines the strengths 

of recurrent neural networks and attention mechanisms to 

handle complex temporal patterns, incorporate various 

types of input data, and offer interpretability through 

attention weights. Recent studies have demonstrated the 
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TFT's superior performance and interpretability in 

various forecasting domains, including energy 

consumption [44, 45], tourism demand [8, 47], and 

economic systems [48]. 

This article proposes that the Temporal Fusion 

Transformer is particularly well-suited for the task of 

high-accuracy prediction of international raw material 

trade flows. By leveraging its unique architectural 

features, the TFT can potentially overcome some of the 

limitations of existing methods, providing more accurate, 

robust, and interpretable forecasts essential for 

enhancing resilience in global raw material supply chains 

[19, 20, 21, 22]. We outline a conceptual framework for 

applying the TFT to this problem and discuss the 

potential benefits and implications. 

2. Methods 

The proposed methodology for achieving high-accuracy 

prediction of international raw material trade flows 

utilizes the Temporal Fusion Transformer (TFT) model 

[46]. This section outlines the conceptual approach, data 

requirements, model architecture considerations, and 

evaluation strategy. 

2.1. Data Requirements 

Effective application of the TFT requires a 

comprehensive dataset encompassing various types of 

information relevant to international raw material trade. 

This includes: 

• Historical Trade Flow Data: Time series data on 

the volume or value of specific raw material exports and 

imports between pairs of countries over a significant 

period [17, 18]. This forms the primary target variable 

for forecasting. 

• Temporal Exogenous Variables: Time-varying 

factors that influence trade flows, such as: 

o Economic indicators (GDP, industrial production 

indices, inflation rates) of trading partners. 

o Exchange rates. 

o Commodity prices. 

o Shipping costs and logistics indices. 

o Policy changes (tariffs, trade agreements, export 

restrictions) [17]. 

o Global events (pandemics, conflicts, natural 

disasters) [10, 11, 12]. 

• Static Exogenous Variables: Time-invariant or 

slowly changing factors relevant to trade, such as: 

o Geographical distance between countries (a key 

component of gravity models) [4, 23, 24, 25, 26]. 

o Shared borders, common language, colonial ties 

(from gravity models) [25, 26]. 

o Institutional factors and trade agreements. 

o Raw material production and consumption 

capacities of countries. 

Data collection would involve compiling these variables 

from reputable international trade databases, economic 

statistics agencies, and relevant policy sources (e.g., OECD 

inventory of export restrictions [17]). The data should be 

structured as multiple time series, with each series 

representing a specific trade flow (e.g., exports of iron ore 

from Country A to Country B) and associated temporal and 

static features. 

2.2. Temporal Fusion Transformer (TFT) Architecture 

The TFT architecture [46] is specifically designed for 

multi-horizon time series forecasting with interpretability. 

Its key components include: 

• Gating Mechanisms: These allow the model to 

selectively process relevant information and discard 

irrelevant inputs, enhancing robustness to noisy data. 

• Variable Selection Networks: These learn the 

importance of different input features at each time step, 

contributing to interpretability. 

• LSTM Encoders: These process the historical time 

series data, capturing temporal dependencies and 

patterns [52]. 

• Transformer Interpretable Multi-Head Attention: 

This mechanism allows the model to attend to relevant 

past time steps and identify important correlations across 

different time series, providing insights into which 

historical periods or variables are driving the forecast 

[57]. 

• Decoder: This component generates forecasts for 

multiple future time steps simultaneously (multi-horizon 

forecasting). 

• Quantile Outputs: The TFT can be trained to predict 

different quantiles of the forecast distribution, providing 

uncertainty estimates alongside point forecasts. 

For predicting raw material trade flows, the historical 

trade data and temporal exogenous variables would be fed 

into the LSTM encoders. Static exogenous variables would 

be incorporated through the gating and variable selection 

mechanisms. The multi-head attention would allow the 

model to learn complex interactions between different 

raw materials, trading partners, and influencing factors 

over time. 

2.3. Model Training and Evaluation 

The dataset would be split into training, validation, and 

testing sets. The TFT model would be trained to minimize 

a loss function (e.g., quantile loss for quantile forecasts or 

Mean Squared Error for point forecasts) using an 

optimization algorithm. Hyperparameter tuning would be 

performed using the validation set. 
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Model evaluation would be conducted on the unseen test 

set using standard time series forecasting metrics, 

including: 

• Mean Absolute Error (MAE) 

• Root Mean Squared Error (RMSE) 

• Mean Absolute Percentage Error (MAPE) 

• Weighted Pinball Loss (for quantile forecasts) 

The performance of the TFT would be compared against 

established baseline models commonly used in trade 

forecasting, such as: 

• ARIMA [2, 27, 30, 31, 32] 

• Prophet [3, 28, 29, 33, 34] 

• LSTM networks [5, 52] 

• Graph Neural Networks (GNNs) [35, 36, 37, 38, 39, 

40, 41, 42, 53] 

• Gravity models (potentially as a benchmark or 

integrated as features) [4, 23, 24, 25, 26] 

Interpretability features of the TFT, such as variable 

importance scores and attention weights, would also be 

analyzed to understand which factors the model deems 

most influential in predicting specific trade flows. 

2.4. Implementation Considerations 

Implementing the TFT requires access to deep learning 

frameworks (e.g., TensorFlow, PyTorch) and potentially 

specialized libraries for time series modeling. The 

computational resources needed for training can be 

substantial, especially for a large number of time series 

and features. Careful data preprocessing, including 

handling missing values and scaling, is essential. The 

dynamic nature of global events necessitates a strategy 

for incorporating new information and potentially 

retraining or fine-tuning the model periodically [10, 11, 

12]. Prompt-based learning paradigms [59, 60], while 

more common in NLP, could potentially inspire future 

adaptations for incorporating qualitative information or 

expert knowledge into the forecasting process. 

3. RESULTS 

Applying the Temporal Fusion Transformer (TFT) to the 

task of forecasting international raw material trade flows 

is expected to yield significant improvements in 

prediction accuracy compared to traditional and other 

deep learning methods. Based on the architectural 

advantages of the TFT and its demonstrated performance 

in other complex time series domains [8, 44, 45, 47, 48], 

the following results are anticipated: 

3.1. Superior Forecasting Accuracy 

The primary expected result is that the TFT model will 

achieve higher accuracy on the chosen evaluation metrics 

(MAE, RMSE, MAPE, Weighted Pinball Loss) when 

predicting raw material trade flows across multiple future 

horizons compared to benchmark models such as ARIMA 

[2, 27], Prophet [3, 28], LSTM [5, 52], and GNNs [35, 36, 

53]. This superior performance is attributed to the TFT's 

ability to effectively model complex, non-linear temporal 

dynamics, capture long-range dependencies through its 

attention mechanisms, and leverage diverse static and 

dynamic exogenous variables simultaneously [46]. While 

LSTMs and GNNs can capture some of these aspects [5, 35, 

36], the TFT's integrated architecture for handling 

multiple input types and its interpretable attention 

mechanism provide an advantage in discerning relevant 

patterns in noisy and volatile trade data. 

3.2. Robustness to Volatility and Shocks 

International raw material trade is particularly 

susceptible to sudden shocks arising from geopolitical 

events, policy changes, or supply chain disruptions [10, 11, 

13, 14, 15, 17]. The TFT's gating mechanisms and variable 

selection networks are hypothesized to contribute to its 

robustness by allowing it to selectively focus on the most 

relevant information and potentially down-weight noisy 

or less informative inputs during periods of high volatility. 

While no forecasting model can perfectly predict 

unprecedented events, the TFT's architecture is better 

equipped to adapt to changing patterns influenced by 

dynamic factors compared to models that rely solely on 

historical time series decomposition or simpler linear 

relationships. 

3.3. Enhanced Interpretability 

Beyond point forecasts, a key result from using the TFT is 

the generation of interpretable insights. The interpretable 

multi-head attention mechanism [46, 57] allows for 

visualizing which historical time steps and input variables 

are most influential in generating a particular forecast. For 

example, the attention weights could reveal that the 

predicted volume of copper exports from Country X to 

Country Y is heavily influenced by recent industrial 

production data in Country Y, combined with a historical 

trade agreement signed several years ago, and is currently 

paying significant attention to global energy prices. 

Variable importance scores derived from the variable 

selection networks would quantify the overall relevance of 

each static and dynamic feature across all forecasts. This 

interpretability is a significant advantage over many other 

black-box deep learning models [5, 35], providing 

decision-makers with actionable insights into the drivers 

of predicted trade flows [8, 47, 48]. 

3.4. Multi-Horizon Forecasting Capability 

The TFT's design for multi-horizon forecasting allows for 

generating predictions for multiple future time steps 

simultaneously [46]. This is crucial for strategic planning 

in raw material trade, which often requires forecasts 

spanning several months or even years. The model is 

expected to maintain relatively high accuracy even for 

longer forecast horizons compared to models that forecast 
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one step at a time or rely on iterative prediction, where 

errors can accumulate. 

3.5. Quantifiable Uncertainty Estimates 

The ability of the TFT to output quantile forecasts 

provides essential information about the uncertainty 

associated with the predictions. This allows stakeholders 

to assess the range of possible outcomes and implement 

risk management strategies accordingly. For raw 

material trade, where price and volume volatility can be 

high, understanding the potential variability in future 

trade flows is as important as the point estimate itself. 

In summary, the expected results from applying the 

Temporal Fusion Transformer to international raw 

material trade forecasting include demonstrably higher 

accuracy, increased robustness to market fluctuations, 

valuable interpretable insights into forecast drivers, 

reliable multi-horizon predictions, and quantifiable 

uncertainty estimates, collectively representing a 

significant advancement in the field. 

4. DISCUSSION AND CONCLUSION 

The accurate forecasting of international raw material 

trade flows is not merely an academic exercise but a 

strategic imperative for governments, industries, and 

organizations operating within the intricate web of 

global value chains [9, 15, 16, 19, 20, 21, 22]. In an era 

defined by interconnected crises and heightened 

uncertainty [10, 11, 12, 14], the ability to anticipate shifts 

in the supply and demand of critical raw materials is 

paramount for ensuring economic stability and resilience 

[9, 15, 16]. This study posits that the Temporal Fusion 

Transformer (TFT) offers a powerful new approach to 

meet this challenge, promising enhanced accuracy and 

much-needed interpretability. 

The expected results, highlighting the TFT's potential for 

superior accuracy compared to established methods like 

ARIMA [2, 27], Prophet [3, 28], LSTM [5, 52], and GNNs 

[35, 36, 53], underscore its capability to model the 

complex, non-linear dynamics and the influence of 

diverse factors that govern raw material trade. Unlike 

simpler time series models, the TFT's architecture is 

designed to handle the interplay between historical 

patterns, time-varying exogenous influences (economic 

indicators, policies, global events), and static 

characteristics (geography, trade agreements) [46]. This 

integrated approach is crucial for capturing the 

multifaceted nature of international trade, which is not 

solely driven by past trends but also by evolving external 

conditions [4, 23, 24, 25, 26]. 

Furthermore, the interpretability offered by the TFT's 

attention mechanisms provides a critical advantage over 

many black-box deep learning models [5, 35]. 

Understanding why a particular forecast is made—which 

factors are most influential at a given time—empowers 

decision-makers to not only react to predictions but also 

to understand the underlying drivers. This insight is 

invaluable for formulating effective trade policies, 

optimizing logistics and inventory, identifying potential 

bottlenecks, and developing strategies to mitigate supply 

chain risks [9, 15, 16, 17]. For instance, if the model 

highlights increasing export restrictions [17] in a key 

producing country and rising industrial demand in a major 

consuming region as primary drivers for a predicted price 

surge, stakeholders can proactively seek alternative 

suppliers or adjust production plans. 

While the potential benefits are substantial, the successful 

implementation of the TFT for raw material trade 

forecasting requires addressing certain considerations. 

The model's effectiveness is heavily reliant on the 

availability and quality of comprehensive, granular data 

across all relevant temporal and static variables. 

Compiling and maintaining such a dataset for a wide range 

of raw materials and trading partners is a significant 

undertaking. The computational resources required for 

training large TFT models can also be considerable. 

Future research should focus on several areas. Empirically 

validating the TFT's performance on diverse raw material 

trade datasets is essential. Exploring methods for 

incorporating real-time or near real-time data streams 

into the forecasting process would enhance 

responsiveness to sudden market shifts. Further 

investigation into the interpretability features of the TFT, 

perhaps combined with causal inference techniques, could 

deepen our understanding of the complex causal 

mechanisms driving global trade flows [8, 58]. Adapting 

prompt-based learning paradigms [59, 60] might offer 

novel ways to integrate qualitative information, such as 

expert assessments of geopolitical risks, into the 

quantitative forecasting framework. 

In conclusion, the Temporal Fusion Transformer holds 

significant promise for advancing the field of international 

raw material trade forecasting. Its ability to deliver high-

accuracy, multi-horizon predictions while providing 

interpretable insights into the drivers of trade makes it a 

valuable tool for navigating the complexities and 

uncertainties of the global economy. By embracing such 

sophisticated deep learning architectures, stakeholders 

can enhance the resilience of their supply chains, make 

more informed strategic decisions, and better prepare for 

the challenges and opportunities in the dynamic world of 

raw material trade. The era of polycrisis demands 

advanced analytical tools, and the TFT appears well-

equipped to be a cornerstone of the next generation of 

trade forecasting systems. 
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