

Reimagining Global Trade: How AI is Forging New Supply Chain Efficiencies, Transparency, and Compliance

Apuroop Reddy Bannur

Sr. Staff Analyst - IT, Bio-Rad Labs

Email ID: arb16115@gmail.com

RECEIVED - 11-25-2025, RECEIVED REVISED VERSION - 12-23-2025, ACCEPTED- 12-24-2025, PUBLISHED- 12-27-2025

Abstract

Artificial intelligence is quickly becoming a part of our everyday life transforming everything around us including the things we do every day. This major shift and rapid adoption of AI across many industries is the start of a new era of how technology can help us improve our lives in a positive way. Behind the scenes AI is transforming major supply chain industries using many applications driven by AI such as robotics, predictive analysis, planning, operations and many more. Due to this fundamental structural impact, the entire industry is going through a significant transformative phase of evolution. This evolution is driving huge investments in AI infrastructure and global competitiveness. This paper examines the significance of this enhancement in global markets across industry leaders like Amazon, Maersk and Alibaba while also examining the institutional governance bodies such as World trade organization and UNCTAD.

The findings show that AI helps organizations make decisions faster, use resources more efficiently, and build supply chains that can better handle crises like the COVID-19 pandemic or geopolitical disruptions. However, these benefits are not shared equally and can widen the digital gap between advanced and developing economies. The spread of AI also brings challenges in governance, such as data privacy, transparency of algorithms, and how regulations fit across borders, as well as ethical concerns. By combining evidence and policy views from different stakeholders, this paper argues that while AI can make trade and production networks more accessible, letting it grow without regulation could make global inequalities worse. The paper calls for international cooperation and flexible governance to make sure the benefits of AI in global trade are fair, sustainable, and widely shared.

Keywords: Artificial Intelligence, Supply Chains, Global Trade, Predictive Analytics

1. Introduction: AI as an Economic Engine

AI has been disrupting a lot of traditional ways of doing things across the supply chains in every aspect to now becoming a primary driving force enhancing logistics, automation, and efficiency across all supply chain functions. This was possible only through improving efficiency and driving automation in key sectors. This challenges the way in which things were done traditionally across areas of risk evaluation, route optimization, and warehouse automation. This provided companies with superpowers to be adaptive and resilient to global markets also providing the ability to take in and analyze shocks that

can disrupt the entire foundation to serve sudden demand surge.

This shift has major effects on global trade, which depends on the smooth movement of goods, information, and money across borders. Advancements of tracking technology have made supply chains more efficient and transparent. Companies can now track shipments in real time, automate customs, and use flexible pricing. Businesses like Amazon, Maersk, and Alibaba use AI to build data-driven supply networks that set new standards for cost, sustainability, and speed. These advances are supported by better digital infrastructure and policies that

promote AI in trade to boost competitiveness and economic strength.

Yet, the integration of AI into international trade is not. Whoever, adding AI to international trade brings challenges. Not all countries have developed AI at the same pace, which creates gaps between richer and poorer economies. Access to digital infrastructure, skills, and funding is uneven. There are also prominent issues like data ownership, cybersecurity, and bias in algorithms. Groups like the WTO, UNCTAD, and WEF stress the need for global cooperation to solve these problems and support innovation and fair growth.

1.1. Problem Statement Rephrased

Though we are in this phase of evolution of supply chains by Adopting AI at large scales there are several areas that remain unexplored through the fundamental structures of supply chains that were built through years of learning and collecting data. A few new age firms at an individual level have become very efficient and agile by adopting recent technology like AI and ML. There are many that lag.

Research Objectives and Questions Rephrased:

- Specific ways in which ML and AI are making strides to shake up the fundamental structure of supply chains to enable us to think beyond horizons in improving efficiency and new possibilities.
- Measure the impacts of adopting AI across large organizations that impact the trade competitiveness that can be quantified.
- The challenges that are to be faced on a

governance standpoint in enabling and improving standards of implementation

2. Literature Review: Setting the Stage

2.1. The Evolution of Supply Chain Management and Trade

SCM has rapidly evolved in the past 10 years and become a complex web that includes sales and operations planning to production to quality checks to managing inventory to shipping across borders to managing complex country specific customs clearance procedures while gaining huge efficiencies along the way from a simple broker model a couple of decades ago. This complex web is now entirely managed by advanced technology where suppliers and customers interact on a common platform with types of pricing such as cost-plus, spot pricing, dynamic pricing and more. This complex evolution has taken decades adapting through times of extreme sensitivity by showing resilience at scale.

We are now in the Industry 4.0 era, where digital technologies—like the Internet of Things, big data, and artificial intelligence—are woven into every part of the supply chain (*As shown in Figure -1, where technology enhances every part of the supply chain*). These technologies enable real-time data integration and faster decision-making, which is essential for building supply chains that are agile, resilient, and highly interconnected. Today, using AI is not optional; it's a necessity if you want to manage the speed and volatility of global trade.

Figure :1- Bridging the gap between the field and the cloud

Source - AI Generated based on the input criteria

2.2. AI Tools for Trade and Supply Networks

Machine learning and Artificial intelligence tools are widely tested and used across various functions in supply chain which eliminate repetitive tasks or manage complex ones with human reasoning.

- **Machine Learning (ML)** algorithms are rapidly being adopted to measure the demand changes which feed route optimization streamlining the end-to-end supply chain by potentially flagging risks.
- **Robotics and Automation** drastically impact speed and quality of manufacturing where there are repetitive tasks involved. This also contributes to self-driving robots that contribute to last mile delivery and warehousing activities.
- **Natural Language Processing (NLP) and Robotic Process Automation (RPA)** are extremely useful to manage complex processes around compliance clearance and customs documentation which contributes to increase in efficiency as less human interventions are needed.

These advances bring clear benefits like smoother trade flows, faster customs processing, and overall gains in global trade efficiency. But they also come with big costs — heavy investment and strong digital infrastructure are needed — so adoption varies widely from country to country.

2.3. Proof of Research and Industry

An enormous number of reports based on academic studies

point out the significant role being played by adopting AI in highly evolving fields like trade and logistics. A report by McKinsey and company has predicted that the adoption of AI fully into the supply chains which are highly focused in the fields of logistics and inventory management can make significant improvements by cutting down costs of up to 15% in logistics and up to 30% in inventory management costs by gaining efficiency through route optimization and just in time concepts. At a systemic level WEF (World economic forum) points that by adoption AI, supply chains across the globe become more resilient and adaptive by supply chain shocks like the COVID-19 pandemic.

Focusing on logistics- **Tradelens**- a project jointly built by Maersk and IBM predicts a global time efficiency gain of over 40% (*As shown in Figure-2 AI Adoption has some significant upside*) in transactional processing times which is huge considering the volume of shipments being handled by the scale of the company. Companies like Amazon and Alibaba are also developing their own AI engines that learn and predict patterns across customer demand which helps to gain massive efficiencies in managing inventory and optimize routes contributing to delivery schedules.

This also shows us that as supply chains get more automated and resilient across manufacturing, shipping and predictive analysis driven through complex algorithms, there also lie challenges on the path forward on a macroeconomic front where a huge divide could be induced between the developing and developed organizations.



Figure -2- Impact of AI in logistics

Source - AI in Logistics: Reducing Costs and Improving Speed – x-cube LABS

2.4. Global Trade, Equity, and Governance Concerns

Artificial intelligence provides significant gains in efficiency but is also bringing up some important questions that need to be answered about various aspects of the ecosystem. Some of these questions revolve around data ownership and data regulation. Several agencies are raising concerns about the growing inequality between economies which are advanced when compared to economies that are poor are developing. This increases the unfair advantages that these developed economies possess in terms of infrastructure spend to build data centers and other supporting infrastructure. These economies include but are not limited to the US, EU, and China.

The report published by OECD on the preparedness on AI index also finds that the long-term advantages to disadvantages ratio are widening as the AI capabilities increase. This is due to several factors such as high quality of data and skilled labor shortages. Furthermore, a significant flow of data across borders is essential for the training of ML and AI system to bring in several advantages for seamless process development, this massive flow of data has many concerns wrapped around it in areas that may not have been standardized such as cybersecurity and privacy. Hence, this makes it important that regulatory bodies that govern and lay foundations on how the use of AI must be done to increase transparency and efficiency.

2.5. Existing Research Gaps

While there is tremendous work that is being done to implement and improve the current application of AI into various sectors and fields, there are some gaps that exist in the ecosystem that is being built across industries and economies. The most important gap identified is that studies that have been conducted in a quantitative manner are measures that are taken that link the adoption of AI in comparison to the actual outcome is actually brings to the business from a long-term implications' perspective. Companies are investing multiple billions of dollars in building infrastructure, but the value addition from these investments is yet to be seen.

Also, there have been rules or regulations that are set to be followed which further widen the gap in terms of ethics around governance of data.

Finally, the metrics measured are all captures at the level of a particular company and not holistically as a system or technology that everyone is rushing to implement.

3. Methodology: How the Study Was Conducted

3.1. Research Design: A Mixed-Methods Approach

The crucial point of understanding done for this research analysis revolves around the idea of measuring qualitative and quantitative analysis. This particular combination helps bring in a bird's eye view of the impact of this new technology on the supply chains, particularly global trade, taking into consideration multiple industries and their functions that help run the global economy while trying to blend the micros and macros in terms of measurement. Global supply chains are not a simple set of data points to be analyzed; they are a complex web of technology integration which in turn influences the methodology of the robust systems that require human decision making with key logistical nuances navigating through immense economic pressures and volatilities. Therefore, this research establishes a bridge between macro-economic shifts and micro-operational processes within these industries.

The perspective of analyzing the existing data which lies in various reports and data sets to identify some of the most important indicators such as AI adoption rates across various functions and the impacts measured by adopting generative artificial intelligence systems is measured from a quantitative approach. The quantitative study of this research is concentrated on metrics that are obtained from analyzing the existing data through industry reports and indicators of the economy.

The qualitative approach focuses on analyzing the performance of major corporations that have already partly implemented and using AI systems in their operations which in turn measures the performance and nature of change that large companies are going through as an advantage of early adopters of artificial intelligence at large scale with multiple applications across all processes. These include but are not limited to functions such as integrations between different operating procedures that provide seamless communication to ease the flow of data for faster decision making for supply chains to react at breakneck speed with dynamic approaches.

The goal of this research is to logically analyze theories that have been partly implemented and analyzed and eventually put them to the test of their relevance with an approach to apply AI to the entire environment which focuses on several factors such as validity, scalability and reliability. While there is a massive advantage of adopting

AI very early at a large scale there still needs a lot training to be done with AI models to be trained to withstand supply chain shocks such as the covid -19 pandemic and also requires a huge upskilling program to be run for existing or new human labor in order to use and capitalize on such complex technologies that are being built.

Keywords: Qualitative and Quantitative analysis, Technology integration, Micros and macros, Logistical nuances

3.2. Data Sources

Primary Data (Qualitative)

- **Maersk-IBM TradeLens Project:** This technology uses blockchain for global maritime tracker by adopting AI integration across tools.

[Data source: IBM United States Software Announcement 218-524, dated December 11,

2018]

- **Amazon's Predictive Fulfillment System:** This technology predicts buyer demand based on seasonality traits and designs route optimization accordingly.

[Data Source: Amazon order fulfillment process: Research gate]

- **Alibaba's Smart Logistics Network:** Information and forecasting related to cross-border trade and shipping.

[Data Source: Supply chain technologies, interorganizational network and firm performance: A case study of Alibaba Group and Cainiao: Research gate]

(As Shown in Figure -3 AI is being adopted in different forms by different companies)

Figure -3: AI in Big Tech Logistics Giants

Source- AI in Logistics Adoption Guide: Intellify

Secondary Data (Quantitative)

- **UNCTAD:** Statistics related to digital economic growth and AI adoption worldwide.
- **World Bank:** Indicators focused on trade

competitiveness and logistics performance.

- **McKinsey Global Institute & WEF Reports:** Firm-level metrics on AI adoption and economic impact projections.

- **OECD AI Policy Observatory:** National AI policy frameworks and readiness indexes.

3.3. Analytical Framework

Below are theories that are integrated in perspective to further guide the analysis.

Global Value Chain (GVC) Analysis

The **GVC framework (Gereffi & Fernandez-Stark, 2016)** is certainly especially useful to assess how artificial intelligence fundamentally rewrites the foundation on which the production networks are built-

- Providing an advantage to countries with massive investments
- Significantly improving coordination and efficiency among global distributors and suppliers.
- Fundamentally shifting the sectors are the technology forward.

Technology Adoption Framework

The **Technology Adoption Model (TAM) (Davis, 1989)** is studied to enhance the perspective to understand why there are differences in the adoption rates of AI among multiple companies and nations at distinct levels of such as labor upskilling and infrastructure investments.

3.4. Data Analysis Procedures

The analysis is explained in three distinct parts:

1. **Descriptive Analysis:** Compared among metrics such as adoption rates, performance and growth help prepare a benchmark which gives a scale to be compared against
2. **Comparative Case Analysis:** This helps to compare companies that are in the same industry and always have the same business model, this in turn helps us understand the similar areas where AI is being adopted the most to reduce cost and improve operational efficiency.
3. **Synthesis and Theoretical Integration:** The consideration of both cases in evaluation of competitiveness

These indicators are descriptively indicated. The quantitative and qualitative data that is analyzed has been done in a thematic analytic nature of this given research.

3.5. Limitations

AI is in the initial stages of adoption, and not all organizations are adopting AI at a uniform pace to perform the same tasks hence there exist some limitations to the study.

Potential Bias: Some companies' scale or the benchmark of measurement of data or performance might not be consistent with the method of measurement among other companies. At an institutional level, the data that is analyzed or measured might not be as standardized as expected or at a level of private organizations measure it. Some key improvements include digitalization, robotics, and analytics.

Data Bases Searched -

This research primarily studied some of the most reputable sources from academic, institutional and industries to ensure relevance.

Below are the databases searched by order of most used -

- Google Scholar
- World Trade Organization
- McKinsey Global Institute
- DHL Trend Research
- World Bank Open Data
- Organization for economic Co-operation and development
- United Nations Conference on Trade and Development

Time Period -

The data analyzed for this research was published between 2015 and 2024. This was intentionally done so that the changes in supply chain, global trade, developments related to digital trade and commerce, and the advancement of AI can be carefully studied, analyzed and documented.

Inclusion and Exclusion criteria-

Inclusion -

- Reviewed academic articles and reports from industrial institutions.
- Other research papers and publications that are directly or indirectly address the implications and role of AI in the broader sector of supply chain and

global trade.

- Studies that focus on quantitative measures of various performance indicators throughout the supply chain such as operating efficiency, cost reduction, forecast accuracy etc.

Exclusion -

- Articles based on pure opinions that do not have empirical and analytical evidence.
- Old reports before 2015 that currently do not have any value as the industry has changed quite a bit over the past decade.
- Studies that have focused on a single country's domestic supply chain
- In total there were around 30-40 different articles, reports and analysis referred to and reviewed to be able to produce this research. All these readings were analyzed for relevance from a perspective of timeline and academic importance.

Selection of case studies -

- These case studies were selected based on many factors out of which some of the major factors are as below -
- Operating scale is global and has big cross border traffic.
- Early and large-scale adopters of AI across many parts of the supply chain including but not limited to Forecasting, robotic automation for warehouses and customs clearance.
- Also, data availability at scale with empirical evidence, another major criteria is that all these (Amazon, Maersk, and Alibaba) are around the industry but operate and serve very different customers and markets, hence it makes it very interesting to study the applications of AI across companies.

Integration of Qualitative and Quantitative Data –

This research used a mixed method integration approach by combining the qualitative and quantitative insights using 3 major factors-

Quantitative Analysis - Aggregated macro-level data (AI adoption rates, logistics performance indices, trade competitiveness metrics) from UNCTAD, OECD, World

Bank, and WEF also used descriptive comparisons to identify patterns and performance differentials.

Qualitative Analysis- Examined firm-level case studies to understand implementation strategies, operational changes, and decision-making impacts. Focused on governance, resilience, and organizational transformation.

Synthesis and Theoretical Integration- Cross-referenced empirical findings with GVC and TAM frameworks. Linked firm-level outcomes (micro) to systemic trade and governance implications (macro).

This triangulated approach strengthened analytical validity by ensuring that quantitative trends were supported and contextualized by real-world operational evidence.

4. Analysis and Results: The Evidence Overview

The analysis done through this study focuses on some major factors that are structured towards Strategic, Operational, and geopolitical concerns. The analysis done is from sources that are based on case studies examined around the secondary data analyzed by some of the major corporations such as Amazon, Alibaba, and Maersk. The institutional findings are from the global partners that govern data among countries with national interests in mind. These institutions include WTO, WEF and INCTAD.

4.1. Operational Impacts: Efficiency, Visibility, and Resilience

There have been several significant improvements already delivered by adopting AI in areas of functional efficiency and transparency of global supply chains, using an AI model of predictive modeling and real-time data processing, by building on analytical capabilities as discussed earlier.

Inventory optimization by AI-

A 2022 McKinsey report estimated that advanced, AI-driven predictive analytics can cut **inventory holding costs by up to 35%** and improve the accuracy of demand forecasts by half (McKinsey & Company, 2022).

Trade Digitalization and smart documentation-

Similarly, the **World Economic Forum (2023)** notes that AI has enabled tracking and surveillance systems to deliver real-time visibility across global distribution networks.

Predictive risk management-

- Example 1: DHL's Resilience Platform:

Resilience360- a platform built and operated by DHL, utilizes AI to predict weather patterns and possible shipment disruptions to navigate through routes using data from thousands of ongoing shipments. DHL reported that the delivery times were reduced by up to 30% improving customer reliability.

Predictive analysis by Amazon-

- **Example 2: Amazon's Predictive Logistics:** The use of AI in Amazon's operations is done at a warehouse level by leveraging robotic systems and complex algorithms that anticipate the products that their customers are more likely to buy, depending on several factors. This helps Amazon move such products closer to the buyers before the order is placed, which helps significantly cut both costs and delivery times (WTO 2023)

More importantly, AI provides insights to strengthen the resilience of supply chains to recover faster from shocks such as the COVID-19 Pandemic, which disrupted the global supply chain. (Ivanov 2021)

4.2. Strategic Impacts: Reconfiguration and Decision-Making

The transformation that AI brings to both the daily process improvement and the long-term strategy of global supply chains is bringing in efficiency, transparency, and reliability on multiple areas across the operations of supply chain applications.

Advanced technologies such as Digital Twin, which are powered by AI, enable modeling of the entire supply chain network, enabling companies to test disruption scenarios and build contingency plans that are more capable of handling extreme scenarios.

Trade digitalization and smart documentation-

- **Example 3: Maersk–IBM TradeLens:** Tradelens is a joint venture that has structurally simplified visibility and documentation in global shipping, built in partnership between Maersk and IBM, resulting in a considerable time reduction of 40% in document processing and tracking over 30 million container shipments worldwide. By integrating analytics driven by AI into Tradelens, the platform brings logistic partners, carriers, and customs agents together to identify bottlenecks, thereby boosting coordination and mutual trust.

As AI Adoption is providing the supply chain responsiveness, companies are utilizing the advantage of reshoring and nearshoring to move production closer to the markets and moving away from faraway low-cost offshoring as Automation cancels the low-cost, discounted labor advantage. This is now beginning to become a trend that is already showing signs of reshaping global trade flows, thereby significantly reducing long supply chains routes and processes (World Bank,2023)

4.3. Economic Impacts: Competitiveness, Productivity, and Jobs

From a macroeconomic perspective, thus far, the adoption of AI shows positive signs in the areas of productivity and trade competitiveness. According to the World Bank, the countries that have superior AI adoption have distinctively seen faster growth in performance and high-value exports.

On average, a 15% increase in trade competitiveness is exhibited by countries that have a high AI adoption rate when compared to low adoption rates, according to a review of OECD Data. AI brings the advantage of a reduction in transactional costs and accelerated customs clearance, which results in a streamlined trade flow.

UNCTAD (2023) Digital Economy Report warns that the divide in AI adoption is deepening and that the risks can lead to global inequalities, which cause a concentration of the majority of value creation in the global supply chain amongst a few dominant parties.

AI adoption has a major domino effect on the labor market. Low-skilled jobs are rapidly being replaced by AI automation in logistics and manufacturing, while driving up demand for skilled, specialized roles such as Data science engineering and AI managers.

4.4. Geopolitical Implications: Governance and Data Sovereignty

The Rapid adoption of large language models into the supply chains of major companies and countries introduces new challenges. These challenges must be tackled or addressed at scale before any major disruption takes place as these are related to digital assets and cybersecurity.

Advanced AI economies like the US and China are repeatedly setting up de facto regulations and rules around global trade, which might impact smaller economies.

Further, AI-powered global trade systems are connected to a vast number of other systems, which increases the risk of

being prone to cybersecurity attacks, system failures, and data manipulation.

A survey done in 2022 by the WEF of logistic executives identified that threats related to cybersecurity are the single most critical AI-related risk in global trade operations.

All these challenges put together strongly emphasize that there is an urgent need for a global AI governance committee to be set up, and new frameworks must be established. These new frameworks must promote strong ethical standards and equal access to digital infrastructure. If not done internationally, including as many economies as possible, the concentration of power remains within a handful of nations.

4.5. Summary of Key Finding

Operational: Predictive logistical strategies, accuracy, efficiency, Data integration costs, technological dependency

Strategic: Scenario planning, enhanced visibility, network restructuring, Organizational change, and major skills gaps

Economic: Increased trade competitiveness, productivity surge, Job displacement, unequal global access

Geopolitical: Digital trade growth, global data integration, Cybersecurity threats, and data sovereignty conflicts

Conclusion: Securing a Digital Future for all

This study has researched multiple factors that are taken into consideration which have huge impacts on AI adoption in various sectors, impacting several aspects of the global supply chains including but not limited to governance and efficiency that constitutes the building blocks of international trade. Adoption of AI gives a rapid boost to enhancing supply chains across the organization to be more

1. Bals, L., & Tate, W. L. (2018). Sustainable supply chain design in social businesses: Advancing the theory of supply chain. *Journal of Business Logistics*, 39(1), 57–79. <https://doi.org/10.1111/jbl.12172>
2. Christopher, M. (2016). *Logistics and supply chain management* (5th ed.). Pearson Education.
3. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly*, 13(3), 319–340.
4. DHL. (2021). *Artificial intelligence in logistics: Harnessing the power of machine learning*. DHL Trend

resilient and adaptive of rapidly changing geopolitical conditions and trade tariffs where building a cost-efficient model thrives to achieve success.

The research meanwhile also points to some of the vulnerabilities that are being discovered as the pace of AI adoption is at an unprecedented rate with huge investments with firms with deep pockets is in turn driving the divide between early adopters and slow movers in this space. As AI requires huge investments this gap is vulnerable to quick and deep divides.

As more countries adopt AI for global trade, there will be a massive cross-border data flow, which raises the question of geopolitical friction, regulatory disharmony, and an increased risk of cybersecurity incidents. All these factors together impose a threat to society to restructure the global value chains in a manner that solidifies existing trade imbalances.

Finally, this paper concludes by stating that inclusivity and sustainability of global trade cannot be achieved through technology adoption alone. To ensure that the advantages gained by adopting AI Cooperation at an international scale, governments must practice Ethical data sharing laws and become an essential practice among policy makers. Also sharing digital infrastructure must become essential among developing countries. This can be achieved only through coordination and actions through a regulatory unbiased body in the global community can be fully benefited by harnessing AI's potential to build a robust and resilient supply chain.

(The References Section remains the same as provided in the original text, as citation data is factual and should not be modified.)

The References (Original Section)

Research. <https://www.dhl.com/global-en/home/insights-and-innovation/thought-leadership/trend-reports/ai-in-logistics.html>

5. Gereffi, G., & Fernandez-Stark, K. (2016). *Global value chain analysis: A primer*. Duke University Center on Globalization, Governance & Competitiveness. https://gvcc.duke.edu/wp-content/uploads/Duke_GVC_Analysis_Primer_2nd_Ed_2016.pdf
6. Ivanov, D. (2021). Digital supply chain management and Industry 4.0: A conceptual analysis. *International*

7. *Journal of Production Research*, 59(16), 4960–4972. <https://doi.org/10.1080/00207543.2020.1835524>
8. McKinsey & Company. (2022). *The state of AI in supply chains*. McKinsey & Company. <https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai>
9. OECD. (2022). *AI policy observatory: National readiness data*. OECD Publishing. <https://oecd.ai/en/>
10. Rodrik, D. (2021). New technologies, global value chains, and developing economies. *The World Economy*, 44(2), 436–455. <https://doi.org/10.1111/twec.13098>
11. UNCTAD. (2023). *Digital economy report 2023: Data and cross-border trade*. United Nations Conference on Trade and Development. https://unctad.org/system/files/official-document/der2023_en.pdf
12. Wieland, A. (2021). Dancing the supply chain: Toward transformative supply chain management. *Journal of Supply Chain Management*, 57(1), 58–73. <https://doi.org/10.1111/jscm.12248>
13. World Bank. (2023). *Technology and trade competitiveness indicators*. World Bank. <https://data.worldbank.org/topic/21>
14. World Economic Forum. (2023). *AI and the future of global value chains*. World Economic Forum. <https://www.weforum.org/reports/ai-and-the-future-of-global-value-chains/>
15. World Trade Organization. (2023). *World trade report 2023: Artificial intelligence and global commerce*. World Trade Organization. https://www.wto.org/english/res_e/booksp_e/world_trade_report23_e.pdf