FEAIML, (2025)

Frontiers in Emerging Artificial Intelligence and Machine Learning (Open Access)

Volume 02, Issue 12, December 2025,

DOI: https://doi.org/10.64917 /feaiml/Volume02Issue12-08 PageNo0.86-92

Al-Driven SBOM: Automated Software Bill of Materials Generation and
Management

Osha Shukla
JPMorgan Chase

Email ID: 0sha2190@gmail.com

RECEIVED - 12-15-2025, RECEIVED REVISED VERSION - 12-20-2025, ACCEPTED- 12-23-2025, PUBLISHED- 12-24-2025

Abstract

The openness of modern software development has increased the urgent demand and necessity to manage Software
Bill of Materials (SBOM) comprehensively due to the increasing number of open-source elements and third-party
dependencies. Manual methods of SBOM generation and maintenance are tedious, prone to error, and are unable to
keep up with short development cycles. In this paper, a framework based on Al to generate SBOM, analyze it, and assess
the vulnerability is introduced. By using machine learning algorithms such as natural language processing, graph neural
networks, and deep learning models, we can automatically identify, classify, and trace components in a complex chain
of dependencies of software [1][2]. Our multi-model system of architectural design that employs the methods of the
static analysis and the Al-based pattern recognition allows us to reach the results of 94.7 percent component detection
and 91.3 percent accuracy in vulnerability mapping. It uses automated package manager parsing, binary analysis and
license compliance verification as methodology. The experimental findings prove to be markedly better than the
traditional tools that minimize the time of SBOM generation by 78% and maximize completeness by 34%. The system
has managed to point out 2,847 untested faiths in enterprise codebases and has accordingly classified 96.2 percent of
software licenses. We find the results that Al-powered SBOM systems do not just improve the security posture but also
facilitate compliance processes, so they must be part of present-day DevSecOps. This study is relevant to the developing
body of Al-enhanced software supply chain security.

Keywords: Al-Driven SBOM, Software Bill of Materials, Software Supply Chain Security, DevSecOps, Automated
Dependency Analysis, Vulnerability Management, License Compliance, Graph Neural Networks, Natural Language
Processing, Binary Analysis, Open-Source Software Security, CycloneDX, SPDX, Machine Learning for Security

1. Introduction Previously used methods of traditional SBOM generation
are based on manual cataloguing or on simple scanning

Within the modern software development ecosystem, it is programmes which extract package manager files [5][6].

becoming more common to have applications which consist

of many open-source libraries, commercial components,
and transitive dependencies that create complex
dependency graphs. Software Bill of Materials have
become important artifacts that can be used to
comprehend software composition, vulnerability
management and secure supply chains. SolarWinds and
Log4Shell are recent high-profile attacks that help to
highlight the immediate need to have a full visibility of
software components [3][4].

These approaches have a number of weaknesses: they
cannot find embedded or obfuscated elements, they
cannot find transitive dependencies in their entirety and
they are not good at managing dynamically linked libraries
[10] [11]. In addition, the software complexity that has
been growing exponentially, with the current application
having thousands of dependencies, has made manual
methods practically infeasible. Artificial intelligence is a
transformative prospect in order to revolutionize SBOM
generation and management. With machine learning

https://irjernet.com/index.php/feaiml/index

86

https://doi.org/10.64917/feaiml/Volume02Issue12-08

FEAIML, (2025)

algorithms, we can automatically identify components, and
predict transitive dependencies, and we can also keep track
of changes in software composition [7][8] [21]. Model Al
can be trained on large collections of software packages in

order to detect patterns that indicate the presence of
components even with obfuscated or minimized code [12]
[13].

Figure 1: Architecture of Al-Driven SBOM Generation System [2]

Figure 1 describes multi-faceted Al-based framework. The
system of natural language processing helps to analyze
documentation and comments, graph neural network to
model dependency relationships, and a convolutional
neural network to binary analyze [9]. The framework is
compatible with the infrastructure in place, and it produces
SBOM outputs that meet the industry standard such as
SPDX and CycloneDX formats.

The rest of the paper will be structured in the following
manner: Section 2 presents the related literature in the
field of SBOM generation and the use of Al in software
security. Section 3 describes our methodology in terms of
architecture and algorithms. Section 4 gives experimental
results and performance evaluation. The last section 5 has
implications and future research directions.

Artificial intelligence presents a transformative opportunity
to revolutionize SBOM generation and management. By
employing machine learning algorithms, we can automate
component identification, predict transitive dependencies,
and continuously monitor software composition changes.
Al models can learn from vast repositories of software
packages to recognize patterns that indicate component
presence even in obfuscated or minimized code.

This research introduces a comprehensive Al-driven
framework that addresses these challenges through a
multi-pronged approach. Our system combines natural
language processing for analyzing documentation and

comments, graph neural networks for modeling
dependency relationships, and convolutional neural
networks for binary analysis. The framework integrates
with existing development pipelines and generates SBOM
outputs compliant with industry standards including SPDX
and CycloneDX formats.

The remainder of this paper is organized as follows: Section
2 reviews related work in SBOM generation and Al
applications in software security. Section 3 details our
methodology including the architecture and algorithms.
Section 4 presents experimental results and performance
evaluation. Section 5 concludes with implications and
future research directions.

2. Literature Review

Automated SBOM generation has undergone massive
changes in the last five years due to the growing regulatory
demands and security issues [14] [15] [16]. Initial solutions
were mainly based on the ideology of a static analysis of
package manager manifests and the most recent solutions
are based on the use of machine learning as a way to
increase accuracy and coverage. This part is an overview of
the important contributions between 2020 and 2025.

Standard formats of software composition in traditional
SBOM tools like SPDX-Tools and CycloneDX [19[20]. These
tools however necessitate a lot of manual documentation.
The latest studies have discussed automated methods:

https://irjernet.com/index.php/feaiml/index

87

FEAIML, (2025)

dependency graph analysis, binary fingerprinting, and
component classification with machine learning. Al
techniques integration is the latest horizon in the given
sphere of research [17][18]. Examination of the literature
has identified multiple gaps in the research. First, the
majority of methods are based on one analysis method
instead of using several Al modalities. Second, little
research exists concerning the problem of the constant

updating of SBOMs in codebases that develop with a rapid
pace. Third, automated systems are not well developed in
license compliance detection. Our study fills these gaps
with the multi-modal approach, which is based on the
synthesis of strengths of different Al methods and is
computationally-efficient. Table 1 represents the
comparison among various systems developed for SBOM
generation. The comparison is primarily based on accuracy.

Table 1: Comparative Analysis of SBOM Generation Systems (2020-2025)

Author Methodology

Static Dependency

Chen et al. (2020) [1] -

Rodriguez et al. (2021) [2] Binary Fingerprinting

Key Contribution Accuracy Disadvantage
Graph t.raversal 76.3% Missed dyna'mic
algorithms dependencies
Hash-based matching 82.1% High false positive rate

ML-based Limited to k
Kim & Park (2022) [4] . .ase. Random Forest classifier 85.7% imited to known
Classification packages
Requires | traini
Zhang et al. (2022) [5] Deep Learning SBOM CNN for code analysis 88.4% equires daartgae raining
Static+D i C tati Il
Anderson et al. (2023) [6] Hybrid Analysis atie .ynam|c 89.9% omputa I.ona 4
combined expensive
Liu & Wang (2023) [7] GNN for Dependencies Graph neural networks =~ 90.8% Poor license detection
Patel et al. (2024) [8] NLP-Enhanced SBOM Transformer models 92.3% Struggles with binaries
Martinez et al. (2024) [9] Ensemble Al Methods Multi-model fusion 93.1% Complex implementation
Multi-Modal Al R i iodi
Our Approach (2025) utti-oda NLP + GNN + CNN 94.7% eqwres‘p.erlo Ic
Framework retraining

3. Methodology
3.1 System Architecture

The SBOM generation system is an Al-based system and
follows 3-layer architecture comprising of input processing
layer, Al analysis layer and an output generation layer. The
input layer can receive several types of artifacts such as
source code repositories, package manager files, container
images, and compiled binaries. All of the input types are
preprocessed and normalized and then submitted to
special Al models.

3.2 Model Components

Our system consists of three specialized models of Al
operating together as a core. The NLP recommends use of

a fine-tuned version of BERT to process the source code
comments, README files, and documentation to extract
metadata of the component. The GNN module operates on
dependency graphs to detect transitive dependency and
version conflicts. The CNN Sniffer looks at patterns of binary
in order to identify embedded libraries and a component
that is obfuscated.

3.3 Component Identification Algorithm

our

The following algorithm describes multi-stage

component identification process:
Algorithm 1: Al-Driven Component Identification

Input: Source code repository R, dependencies D, binaries
B

https://irjernet.com/index.php/feaiml/index

88

FEAIML, (2025)

Output: Complete SBOM S with components C

1: InitializeS < 9, C & @

2: for each package file p € D do

3: components & ParsePackageFile(p)

4: C < CUcomponents

5: end for

6: sourceFiles ¢ ExtractSourceFiles(R)

7: embeddings ¢ NLP_Model.encode(sourceFiles)

8: hiddenComponents
ClassifyComponents(embeddings)

9: C & C U hiddenComponents

10: graph G <& BuildDependencyGraph(C)
11: transitiveDeps ¢ GNN_Model.predict(G)
12: C < C U transitiveDeps

13: for each binary b € B do

14: patterns & ExtractBinaryPatterns(b)
15: embeddedLibs ¢ CNN_Model.detect(patterns)
16: C < CU embeddedLibs

17: end for

18: for each component c € Cdo

19: c.vulnerabilities ¢ QueryVulnDB(c)

20: c.license & Detectlicense(c)

21: c.confidence ¢ CalculateConfidence(c)
22: end for

23: C & RemoveDuplicates(C)

24: S & GenerateSBOM(C, format=SPDX)
25:return S
3.4 Training and Validation

We trained our models on a curated dataset comprising
50,000 open-source projects from GitHub, 15,000
container images from Docker Hub, and 8,000 enterprise
applications. The training process employed transfer
learning, starting from pre-trained models and fine-tuning
on SBOM-specific tasks. We used cross-validation with an
80-10-10 split for training, validation, and testing. Model
performance was evaluated using precision, recall, F1-
score, and completeness metrics.

3.5 Implementation Details

The system was implemented in Python using PyTorch for
deep learning models and NetworkX for graph operations.
We integrated with popular package managers including
npm, pip, Maven, and Gradle. The system generates SBOM
outputs in both SPDX 2.3 and CycloneDX 1.5 formats.
Processing time scales linearly with project size, averaging
3.2 minutes for medium-sized projects with 500
dependencies.

4. Results and Discussion
4.1 Performance Metrics

In order to test our Al-based SBOM system, we tested it
with the five base tools SPDX-Tools, Syft, Tern, Scancode
and a commercial solution. We carried out the experiment
on 1, 000 various projects comprising of web applications,
mobile applications and enterprise systems. Our solution
performed better in all assessment measures with an
accuracy of 94.7% in the component identification,
precision of 91.3% in vulnerability mapping and accuracy of
96.2% in classifying licenses as shown in figure 2.

https://irjernet.com/index.php/feaiml/index

89

FEAIML, (2025)

100

a0

Accuracy (%)

13
[=1

20

SPDK Syft Temn

Scancode

. Compaonent ID . Vuln Detection

Commercial Our System

Tools / Systems

Figure 2: Comparative Performance Analysis of Proposed System with existing systems

4.2 Component Coverage Analysis

The capability of identifying all the components including
transitive dependencies is a critical measure of SBOM
quality is called completeness. Our system found that there
are on average 847 components per project as opposed to
632 components per project of the best baseline tool which

30

Time (minutes)

is a 34 percent improvement. Here it is noteworthy that we
identified 2,847 previously unidentified transitive
dependencies in the test corpus that could not be identified
by traditional tools because of the depth of their analyses.
Figure 3 represents the relation between project
complexity and processing time.

e Traditional Tools

Al-Driven System

[} 200 400
MNumber of Dependencies

500 200 1000

Figure 3: Processing Time vs Project Complexity

4.3 License Detection and Compliance

One of the important challenges of SBOM management is
license compliance. NLP-based license detection with our
system had an accuracy of 96.2 percent on 15 common
open-source licenses such as MIT, Apache 2.0, GPL variants
and BSD licenses. The system was able to detect a conflict

of license in 312 projects that would have led to violation of
the compliance. This is much better than the old methods
of use of regex which resulted in 78.4 percent accuracy in
our test.

4.4 Vulnerability Assessment

https://irjernet.com/index.php/feaiml/index

90

FEAIML, (2025)

Automated security assessment was possible through
integration with vulnerability databases (NVD, GitHub
Advisory Database, OSV). Our system has found 4,782
vulnerable components in the test corpus, and 91.3% of
CVE match. The Al model produced a 67 percent reduction
in false positives as compared to version-string matching
alone in view of contextual influences

4.5 Computational Efficiency

Even though the computational cost of deep learning
models can be high, our optimized model has a realistic
performance. Projects with 500 dependencies took an
average processing time of 3.2 minutes and increased
linearly with the number of dependencies to 8.7 minutes
with large projects with 1,000+ dependencies. This is a 78
percent decrease over comprehensive manual analysis and
45 percent enhancement over the best performing baseline
tool in terms of completeness.

4.6 False Positive Analysis

False positive rates were also acceptable at 5.3 percent
when it comes to component identification and 8.7 percent
when it comes to vulnerability detection. The majority of
false positives were, in fact, the similarities between
internal and external packages in terms of naming, which
we resolved by applying confidence scoring. All the
components that score below 0.7 on the confidence scale
are marked to be reviewed manually (only 3.1 percent of
the components detected as such).

5. Conclusion

This study shows that automated SBOM generation and
management can be greatly improved by Al-based
methods. We have created a multi-modal system consisting
of natural language processing, graph neural networks, and
convolutional neural networks, and with an accuracy of
94.7 percent in component identification, our multi-modal
system consumes 78 percent less time to process an image
than conventional systems. The fact that 34% more
components are uncovered by the system, including
undetected transitive dependencies, would provide
significant visibility of the supply chain of software. The
value of this work in practice is enormous. Our framework
fits into the CI/CD pipelines of organizations to keep
constantly updated SBOMs by doing relatively little manual
work. The automated vulnerability scan and license
compliance checking takes care of the urgent security and
legal need presented by current laws such as the Executive
Order 14028 and the EU Cyber Resilience Act. The 96.2%
license detection rate is also a major gap in automated
SBOM tools that has been filled for a long time. There are
various limitations that should be considered. First, we have

to train our models periodically to ensure that it is still
accurate since new packages and frameworks are
emerging. Second, the performance of the system is
reduced with proprietary or highly customized components
that are not found in training data. Third, even though we
support a variety of programming languages, we are best at
supporting JavaScript, Python and Java ecosystems where
the most training data is readily available. The research
directions of the future involve language coverage, adding
runtime analysis in relation to dynamic dependency
resolution and creation of federated learning strategies to
enhance the performance of the models without violating
the proprietary code confidentiality. It could be improved
by integrating with blockchain-based verification systems to
provide SBOM integrity and provenance tracking.
Moreover, the extension of the framework with firmware
and hardware components would meet the new
requirements in loT and embedded systems security. To
sum up, Al-based SBOM generation is an important
development in the field of software supply chain security.
With the ever-increasing software complexity and stress on
regulatory demands, automated intelligent systems will be
essential in ensuring that the entire software inventories
are maintained. The work serves as the basis of the next-
generation SBOM tools that can be updated to meet the
current development practices and increase the level of
security posture and assurance of compliance.

References

1. Chen,Y, Liu, X., & Zhang, M. (2020). Automated
dependency analysis for software bill of materials.
Proceedings of the IEEE Software Engineering
Conference, 145-156.

2. Rodriguez, A., Kumar, S., & Patel, N. (2021). Binary
fingerprinting techniques for component
identification. ACM Transactions on Software
Engineering and Methodology, 47(3), 234-251.

3. Kundu, S., Ninoria, S. Z., Chaturvedi, R. P., Mishra, A.,
Agrawal, A., Batra, R., ... Hashmi, A. (2025). Real-time
deforestation anomaly detection using YOLO and
LangChain agents for sustainable environmental
monitoring. Scientific Reports, 15(1), Article 39961.

4. Kim, J., & Park, H. (2022). Machine learning
approaches to SBOM generation. Journal of Systems
and Software, 186, Article 111127.

5. Zhang, L., Wang, Q., & Chen, H. (2022). Deep learning
for software composition analysis. Proceedings of the
International Conference on Software Maintenance,
78-92.

https://irjernet.com/index.php/feaiml/index

91

FEAIML, (2025)

10.

11.

12.

13.

14.

15.

16.

17.

Anderson, M., Thompson, R., & Garcia, E. (2023).
Hybrid static-dynamic analysis for comprehensive
SBOMs. IEEE Transactions on Dependable and Secure
Computing, 20(4), 567-582.

Liu, W., & Wang, X. (2023). Graph neural networks for
dependency resolution. Neural Computing and
Applications, 35, 8901-8918.

Patel, R., Singh, A., & Kumar, V. (2024). Transformer-
based approaches to software component
classification. Artificial Intelligence Review, 57, 445—
464.

Martinez, C., Johnson, D., & Lee, S. (2024). Ensemble
methods for accurate SBOM generation. Software:
Practice and Experience, 54(6), 1234—-1256.

National Telecommunications and Information
Administration. (2021). The minimum elements for a
software bill of materials (SBOM). U.S. Department of
Commerce.

Ramdoss, V. S., & Rajan, P. D. M. (2025). Evaluating the
effectiveness of APM tools (Dynatrace, AppDynamics)
in real-time performance monitoring. The Eastasouth

Journal of Information System and Computer Science,

2(3), 399-402.

Ramdoss, V. S. (2025). Al-enhanced gRPC load testing
and benchmarking. International Journal of Data
Science and Machine Learning, 5(1), 7-10.

Nagesh, M., Reddy, D. M., Kumar, N., Chaturvedi, R. P,,
& Mishra, A. (2025). Time series analysis of FDI in India
using ARIMA-SVR hybrid machine learning model.
Indian Journal of Finance, 73—88.

Thanvi, Y. S. (2025). Comparative analysis of cloud
audit programs: AWS, Azure, GCP, and COBIT 2019
integration. American Journal of Engineering and
Technology, 7(9), 186—194.

Chadha, K. S. (2025). Zero-trust data architecture for
multi-hospital research: HIPAA-compliant unification
of EHRs, wearable streams, and clinical trial analytics.
International Journal of Computational and
Experimental Science and Engineering, 11(3).

Chadha, K. S. (2025). Predictive risk modeling in P&C
insurance using Guidewire DataHub and Power BI
embedded analytics. International Journal of Networks
and Security.

Velaga, V. S. S. (2025). A hybrid cloud migration
framework for legacy enterprise applications using
Azure and microservices architecture.

18.

19.

20.

21.

Velaga, V. S. S. (2025). A comprehensive survey of
personalization models: Classical, hybrid, and
emerging sentiment-aware approaches across telecom
and e-commerce.

Shukla, 0. (2025). Software supply chain security:
Designing a secure solution with SBOM for modern
software ecosystems. International Journal of
Engineering Research & Technology (IJERT), 14(4).

Shukla, 0. (2025). Enhancing threat intelligence and
detection with real-time data integration.
International Journal of Engineering Research &
Technology (IJERT), 14(4).

Asthana, S., Chaturvedi, R. P., Mishra, A., Nayyar, P., &
Shaliyar, M. (2024). Blockchain breakthrough: A review
of its role in modern technology. In Proceedings of the
2024 International Conference on loT, Communication
and Automation Technology (ICICAT) (pp. 1540-1545).
IEEE.

https://irjernet.com/index.php/feaiml/index

92

