
FEAIML, (2025)

86 https://irjernet.com/index.php/feaiml/index

Volume 02, Issue 12, December 2025,

DOI: https://doi.org/10.64917/feaiml/Volume02Issue12-08 PageNo.86-92

AI-Driven SBOM: Automated Software Bill of Materials Generation and
Management

Osha Shukla

JPMorgan Chase

Email ID: osha2190@gmail.com

RECEIVED - 12-15-2025, RECEIVED REVISED VERSION - 12-20-2025, ACCEPTED- 12-23-2025, PUBLISHED- 12-24-2025

Abstract

The openness of modern software development has increased the urgent demand and necessity to manage Software

Bill of Materials (SBOM) comprehensively due to the increasing number of open-source elements and third-party

dependencies. Manual methods of SBOM generation and maintenance are tedious, prone to error, and are unable to

keep up with short development cycles. In this paper, a framework based on AI to generate SBOM, analyze it, and assess

the vulnerability is introduced. By using machine learning algorithms such as natural language processing, graph neural

networks, and deep learning models, we can automatically identify, classify, and trace components in a complex chain

of dependencies of software [1][2]. Our multi-model system of architectural design that employs the methods of the

static analysis and the AI-based pattern recognition allows us to reach the results of 94.7 percent component detection

and 91.3 percent accuracy in vulnerability mapping. It uses automated package manager parsing, binary analysis and

license compliance verification as methodology. The experimental findings prove to be markedly better than the

traditional tools that minimize the time of SBOM generation by 78% and maximize completeness by 34%. The system

has managed to point out 2,847 untested faiths in enterprise codebases and has accordingly classified 96.2 percent of

software licenses. We find the results that AI-powered SBOM systems do not just improve the security posture but also

facilitate compliance processes, so they must be part of present-day DevSecOps. This study is relevant to the developing

body of AI-enhanced software supply chain security.

 Keywords: AI-Driven SBOM, Software Bill of Materials, Software Supply Chain Security, DevSecOps, Automated

Dependency Analysis, Vulnerability Management, License Compliance, Graph Neural Networks, Natural Language

Processing, Binary Analysis, Open-Source Software Security, CycloneDX, SPDX, Machine Learning for Security

1. Introduction

Within the modern software development ecosystem, it is

becoming more common to have applications which consist

of many open-source libraries, commercial components,

and transitive dependencies that create complex

dependency graphs. Software Bill of Materials have

become important artifacts that can be used to

comprehend software composition, vulnerability

management and secure supply chains. SolarWinds and

Log4Shell are recent high-profile attacks that help to

highlight the immediate need to have a full visibility of

software components [3][4].

Previously used methods of traditional SBOM generation

are based on manual cataloguing or on simple scanning

programmes which extract package manager files [5][6].

These approaches have a number of weaknesses: they

cannot find embedded or obfuscated elements, they

cannot find transitive dependencies in their entirety and

they are not good at managing dynamically linked libraries

[10] [11]. In addition, the software complexity that has

been growing exponentially, with the current application

having thousands of dependencies, has made manual

methods practically infeasible. Artificial intelligence is a

transformative prospect in order to revolutionize SBOM

generation and management. With machine learning

Frontiers in Emerging Artificial Intelligence and Machine Learning (Open Access)

https://doi.org/10.64917/feaiml/Volume02Issue12-08

FEAIML, (2025)

87 https://irjernet.com/index.php/feaiml/index

algorithms, we can automatically identify components, and

predict transitive dependencies, and we can also keep track

of changes in software composition [7][8] [21]. Model AI

can be trained on large collections of software packages in

order to detect patterns that indicate the presence of

components even with obfuscated or minimized code [12]

[13].

Figure 1: Architecture of AI-Driven SBOM Generation System [2]

Figure 1 describes multi-faceted AI-based framework. The

system of natural language processing helps to analyze

documentation and comments, graph neural network to

model dependency relationships, and a convolutional

neural network to binary analyze [9]. The framework is

compatible with the infrastructure in place, and it produces

SBOM outputs that meet the industry standard such as

SPDX and CycloneDX formats.

The rest of the paper will be structured in the following

manner: Section 2 presents the related literature in the

field of SBOM generation and the use of AI in software

security. Section 3 describes our methodology in terms of

architecture and algorithms. Section 4 gives experimental

results and performance evaluation. The last section 5 has

implications and future research directions.

Artificial intelligence presents a transformative opportunity

to revolutionize SBOM generation and management. By

employing machine learning algorithms, we can automate

component identification, predict transitive dependencies,

and continuously monitor software composition changes.

AI models can learn from vast repositories of software

packages to recognize patterns that indicate component

presence even in obfuscated or minimized code.

This research introduces a comprehensive AI-driven

framework that addresses these challenges through a

multi-pronged approach. Our system combines natural

language processing for analyzing documentation and

comments, graph neural networks for modeling

dependency relationships, and convolutional neural

networks for binary analysis. The framework integrates

with existing development pipelines and generates SBOM

outputs compliant with industry standards including SPDX

and CycloneDX formats.

The remainder of this paper is organized as follows: Section

2 reviews related work in SBOM generation and AI

applications in software security. Section 3 details our

methodology including the architecture and algorithms.

Section 4 presents experimental results and performance

evaluation. Section 5 concludes with implications and

future research directions.

2. Literature Review

Automated SBOM generation has undergone massive

changes in the last five years due to the growing regulatory

demands and security issues [14] [15] [16]. Initial solutions

were mainly based on the ideology of a static analysis of

package manager manifests and the most recent solutions

are based on the use of machine learning as a way to

increase accuracy and coverage. This part is an overview of

the important contributions between 2020 and 2025.

Standard formats of software composition in traditional

SBOM tools like SPDX-Tools and CycloneDX [19[20]. These

tools however necessitate a lot of manual documentation.

The latest studies have discussed automated methods:

FEAIML, (2025)

88 https://irjernet.com/index.php/feaiml/index

dependency graph analysis, binary fingerprinting, and

component classification with machine learning. AI

techniques integration is the latest horizon in the given

sphere of research [17][18]. Examination of the literature

has identified multiple gaps in the research. First, the

majority of methods are based on one analysis method

instead of using several AI modalities. Second, little

research exists concerning the problem of the constant

updating of SBOMs in codebases that develop with a rapid

pace. Third, automated systems are not well developed in

license compliance detection. Our study fills these gaps

with the multi-modal approach, which is based on the

synthesis of strengths of different AI methods and is

computationally-efficient. Table 1 represents the

comparison among various systems developed for SBOM

generation. The comparison is primarily based on accuracy.

Table 1: Comparative Analysis of SBOM Generation Systems (2020-2025)

Author Methodology Key Contribution Accuracy Disadvantage

Chen et al. (2020) [1]
Static Dependency

Analysis

Graph traversal

algorithms
76.3%

Missed dynamic

dependencies

Rodriguez et al. (2021) [2] Binary Fingerprinting Hash-based matching 82.1% High false positive rate

Kim & Park (2022) [4]
ML-based

Classification
Random Forest classifier 85.7%

Limited to known

packages

Zhang et al. (2022) [5] Deep Learning SBOM CNN for code analysis 88.4%
Requires large training

data

Anderson et al. (2023) [6] Hybrid Analysis
Static + Dynamic

combined
89.9%

Computationally

expensive

Liu & Wang (2023) [7] GNN for Dependencies Graph neural networks 90.8% Poor license detection

Patel et al. (2024) [8] NLP-Enhanced SBOM Transformer models 92.3% Struggles with binaries

Martinez et al. (2024) [9] Ensemble AI Methods Multi-model fusion 93.1% Complex implementation

Our Approach (2025)
Multi-Modal AI

Framework
NLP + GNN + CNN 94.7%

Requires periodic

retraining

3. Methodology

3.1 System Architecture

The SBOM generation system is an AI-based system and

follows 3-layer architecture comprising of input processing

layer, AI analysis layer and an output generation layer. The

input layer can receive several types of artifacts such as

source code repositories, package manager files, container

images, and compiled binaries. All of the input types are

preprocessed and normalized and then submitted to

special AI models.

3.2 Model Components

Our system consists of three specialized models of AI

operating together as a core. The NLP recommends use of

a fine-tuned version of BERT to process the source code

comments, README files, and documentation to extract

metadata of the component. The GNN module operates on

dependency graphs to detect transitive dependency and

version conflicts. The CNN Sniffer looks at patterns of binary

in order to identify embedded libraries and a component

that is obfuscated.

3.3 Component Identification Algorithm

The following algorithm describes our multi-stage

component identification process:

Algorithm 1: AI-Driven Component Identification

Input: Source code repository R, dependencies D, binaries

B

FEAIML, (2025)

89 https://irjernet.com/index.php/feaiml/index

Output: Complete SBOM S with components C

1: Initialize S ← ∅, C ← ∅

2: for each package file p ∈ D do

3: components ← ParsePackageFile(p)

4: C ← C ∪ components

5: end for

6: sourceFiles ← ExtractSourceFiles(R)

7: embeddings ← NLP_Model.encode(sourceFiles)

8: hiddenComponents ←

ClassifyComponents(embeddings)

9: C ← C ∪ hiddenComponents

10: graph G ← BuildDependencyGraph(C)

11: transitiveDeps ← GNN_Model.predict(G)

12: C ← C ∪ transitiveDeps

13: for each binary b ∈ B do

14: patterns ← ExtractBinaryPatterns(b)

15: embeddedLibs ← CNN_Model.detect(patterns)

16: C ← C ∪ embeddedLibs

17: end for

18: for each component c ∈ C do

19: c.vulnerabilities ← QueryVulnDB(c)

20: c.license ← DetectLicense(c)

21: c.confidence ← CalculateConfidence(c)

22: end for

23: C ← RemoveDuplicates(C)

24: S ← GenerateSBOM(C, format=SPDX)

25: return S

3.4 Training and Validation

We trained our models on a curated dataset comprising

50,000 open-source projects from GitHub, 15,000

container images from Docker Hub, and 8,000 enterprise

applications. The training process employed transfer

learning, starting from pre-trained models and fine-tuning

on SBOM-specific tasks. We used cross-validation with an

80-10-10 split for training, validation, and testing. Model

performance was evaluated using precision, recall, F1-

score, and completeness metrics.

3.5 Implementation Details

The system was implemented in Python using PyTorch for

deep learning models and NetworkX for graph operations.

We integrated with popular package managers including

npm, pip, Maven, and Gradle. The system generates SBOM

outputs in both SPDX 2.3 and CycloneDX 1.5 formats.

Processing time scales linearly with project size, averaging

3.2 minutes for medium-sized projects with 500

dependencies.

4. Results and Discussion

4.1 Performance Metrics

In order to test our AI-based SBOM system, we tested it

with the five base tools SPDX-Tools, Syft, Tern, Scancode

and a commercial solution. We carried out the experiment

on 1, 000 various projects comprising of web applications,

mobile applications and enterprise systems. Our solution

performed better in all assessment measures with an

accuracy of 94.7% in the component identification,

precision of 91.3% in vulnerability mapping and accuracy of

96.2% in classifying licenses as shown in figure 2.

FEAIML, (2025)

90 https://irjernet.com/index.php/feaiml/index

Figure 2: Comparative Performance Analysis of Proposed System with existing systems

4.2 Component Coverage Analysis

The capability of identifying all the components including

transitive dependencies is a critical measure of SBOM

quality is called completeness. Our system found that there

are on average 847 components per project as opposed to

632 components per project of the best baseline tool which

is a 34 percent improvement. Here it is noteworthy that we

identified 2,847 previously unidentified transitive

dependencies in the test corpus that could not be identified

by traditional tools because of the depth of their analyses.

Figure 3 represents the relation between project

complexity and processing time.

Figure 3: Processing Time vs Project Complexity

4.3 License Detection and Compliance

One of the important challenges of SBOM management is

license compliance. NLP-based license detection with our

system had an accuracy of 96.2 percent on 15 common

open-source licenses such as MIT, Apache 2.0, GPL variants

and BSD licenses. The system was able to detect a conflict

of license in 312 projects that would have led to violation of

the compliance. This is much better than the old methods

of use of regex which resulted in 78.4 percent accuracy in

our test.

4.4 Vulnerability Assessment

FEAIML, (2025)

91 https://irjernet.com/index.php/feaiml/index

Automated security assessment was possible through

integration with vulnerability databases (NVD, GitHub

Advisory Database, OSV). Our system has found 4,782

vulnerable components in the test corpus, and 91.3% of

CVE match. The AI model produced a 67 percent reduction

in false positives as compared to version-string matching

alone in view of contextual influences

4.5 Computational Efficiency

Even though the computational cost of deep learning

models can be high, our optimized model has a realistic

performance. Projects with 500 dependencies took an

average processing time of 3.2 minutes and increased

linearly with the number of dependencies to 8.7 minutes

with large projects with 1,000+ dependencies. This is a 78

percent decrease over comprehensive manual analysis and

45 percent enhancement over the best performing baseline

tool in terms of completeness.

4.6 False Positive Analysis

False positive rates were also acceptable at 5.3 percent

when it comes to component identification and 8.7 percent

when it comes to vulnerability detection. The majority of

false positives were, in fact, the similarities between

internal and external packages in terms of naming, which

we resolved by applying confidence scoring. All the

components that score below 0.7 on the confidence scale

are marked to be reviewed manually (only 3.1 percent of

the components detected as such).

5. Conclusion

This study shows that automated SBOM generation and

management can be greatly improved by AI-based

methods. We have created a multi-modal system consisting

of natural language processing, graph neural networks, and

convolutional neural networks, and with an accuracy of

94.7 percent in component identification, our multi-modal

system consumes 78 percent less time to process an image

than conventional systems. The fact that 34% more

components are uncovered by the system, including

undetected transitive dependencies, would provide

significant visibility of the supply chain of software. The

value of this work in practice is enormous. Our framework

fits into the CI/CD pipelines of organizations to keep

constantly updated SBOMs by doing relatively little manual

work. The automated vulnerability scan and license

compliance checking takes care of the urgent security and

legal need presented by current laws such as the Executive

Order 14028 and the EU Cyber Resilience Act. The 96.2%

license detection rate is also a major gap in automated

SBOM tools that has been filled for a long time. There are

various limitations that should be considered. First, we have

to train our models periodically to ensure that it is still

accurate since new packages and frameworks are

emerging. Second, the performance of the system is

reduced with proprietary or highly customized components

that are not found in training data. Third, even though we

support a variety of programming languages, we are best at

supporting JavaScript, Python and Java ecosystems where

the most training data is readily available. The research

directions of the future involve language coverage, adding

runtime analysis in relation to dynamic dependency

resolution and creation of federated learning strategies to

enhance the performance of the models without violating

the proprietary code confidentiality. It could be improved

by integrating with blockchain-based verification systems to

provide SBOM integrity and provenance tracking.

Moreover, the extension of the framework with firmware

and hardware components would meet the new

requirements in IoT and embedded systems security. To

sum up, AI-based SBOM generation is an important

development in the field of software supply chain security.

With the ever-increasing software complexity and stress on

regulatory demands, automated intelligent systems will be

essential in ensuring that the entire software inventories

are maintained. The work serves as the basis of the next-

generation SBOM tools that can be updated to meet the

current development practices and increase the level of

security posture and assurance of compliance.

References

1. Chen, Y., Liu, X., & Zhang, M. (2020). Automated

dependency analysis for software bill of materials.

Proceedings of the IEEE Software Engineering

Conference, 145–156.

2. Rodriguez, A., Kumar, S., & Patel, N. (2021). Binary

fingerprinting techniques for component

identification. ACM Transactions on Software

Engineering and Methodology, 47(3), 234–251.

3. Kundu, S., Ninoria, S. Z., Chaturvedi, R. P., Mishra, A.,

Agrawal, A., Batra, R., … Hashmi, A. (2025). Real-time

deforestation anomaly detection using YOLO and

LangChain agents for sustainable environmental

monitoring. Scientific Reports, 15(1), Article 39961.

4. Kim, J., & Park, H. (2022). Machine learning

approaches to SBOM generation. Journal of Systems

and Software, 186, Article 111127.

5. Zhang, L., Wang, Q., & Chen, H. (2022). Deep learning

for software composition analysis. Proceedings of the

International Conference on Software Maintenance,

78–92.

FEAIML, (2025)

92 https://irjernet.com/index.php/feaiml/index

6. Anderson, M., Thompson, R., & Garcia, E. (2023).

Hybrid static-dynamic analysis for comprehensive

SBOMs. IEEE Transactions on Dependable and Secure

Computing, 20(4), 567–582.

7. Liu, W., & Wang, X. (2023). Graph neural networks for

dependency resolution. Neural Computing and

Applications, 35, 8901–8918.

8. Patel, R., Singh, A., & Kumar, V. (2024). Transformer-

based approaches to software component

classification. Artificial Intelligence Review, 57, 445–

464.

9. Martinez, C., Johnson, D., & Lee, S. (2024). Ensemble

methods for accurate SBOM generation. Software:

Practice and Experience, 54(6), 1234–1256.

10. National Telecommunications and Information

Administration. (2021). The minimum elements for a

software bill of materials (SBOM). U.S. Department of

Commerce.

11. Ramdoss, V. S., & Rajan, P. D. M. (2025). Evaluating the

effectiveness of APM tools (Dynatrace, AppDynamics)

in real-time performance monitoring. The Eastasouth

Journal of Information System and Computer Science,

2(3), 399–402.

12. Ramdoss, V. S. (2025). AI-enhanced gRPC load testing

and benchmarking. International Journal of Data

Science and Machine Learning, 5(1), 7–10.

13. Nagesh, M., Reddy, D. M., Kumar, N., Chaturvedi, R. P.,

& Mishra, A. (2025). Time series analysis of FDI in India

using ARIMA-SVR hybrid machine learning model.

Indian Journal of Finance, 73–88.

14. Thanvi, Y. S. (2025). Comparative analysis of cloud

audit programs: AWS, Azure, GCP, and COBIT 2019

integration. American Journal of Engineering and

Technology, 7(9), 186–194.

15. Chadha, K. S. (2025). Zero-trust data architecture for

multi-hospital research: HIPAA-compliant unification

of EHRs, wearable streams, and clinical trial analytics.

International Journal of Computational and

Experimental Science and Engineering, 11(3).

16. Chadha, K. S. (2025). Predictive risk modeling in P&C

insurance using Guidewire DataHub and Power BI

embedded analytics. International Journal of Networks

and Security.

17. Velaga, V. S. S. (2025). A hybrid cloud migration

framework for legacy enterprise applications using

Azure and microservices architecture.

18. Velaga, V. S. S. (2025). A comprehensive survey of

personalization models: Classical, hybrid, and

emerging sentiment-aware approaches across telecom

and e-commerce.

19. Shukla, O. (2025). Software supply chain security:

Designing a secure solution with SBOM for modern

software ecosystems. International Journal of

Engineering Research & Technology (IJERT), 14(4).

20. Shukla, O. (2025). Enhancing threat intelligence and

detection with real-time data integration.

International Journal of Engineering Research &

Technology (IJERT), 14(4).

21. Asthana, S., Chaturvedi, R. P., Mishra, A., Nayyar, P., &

Shaliyar, M. (2024). Blockchain breakthrough: A review

of its role in modern technology. In Proceedings of the

2024 International Conference on IoT, Communication

and Automation Technology (ICICAT) (pp. 1540–1545).

IEEE.

