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Abstract 

The openness of modern software development has increased the urgent demand and necessity to manage Software 

Bill of Materials (SBOM) comprehensively due to the increasing number of open-source elements and third-party 

dependencies. Manual methods of SBOM generation and maintenance are tedious, prone to error, and are unable to 

keep up with short development cycles. In this paper, a framework based on AI to generate SBOM, analyze it, and assess 

the vulnerability is introduced. By using machine learning algorithms such as natural language processing, graph neural 

networks, and deep learning models, we can automatically identify, classify, and trace components in a complex chain 

of dependencies of software [1][2]. Our multi-model system of architectural design that employs the methods of the 

static analysis and the AI-based pattern recognition allows us to reach the results of 94.7 percent component detection 

and 91.3 percent accuracy in vulnerability mapping. It uses automated package manager parsing, binary analysis and 

license compliance verification as methodology. The experimental findings prove to be markedly better than the 

traditional tools that minimize the time of SBOM generation by 78% and maximize completeness by 34%. The system 

has managed to point out 2,847 untested faiths in enterprise codebases and has accordingly classified 96.2 percent of 

software licenses. We find the results that AI-powered SBOM systems do not just improve the security posture but also 

facilitate compliance processes, so they must be part of present-day DevSecOps. This study is relevant to the developing 

body of AI-enhanced software supply chain security. 

 Keywords: AI-Driven SBOM, Software Bill of Materials, Software Supply Chain Security, DevSecOps, Automated 

Dependency Analysis, Vulnerability Management, License Compliance, Graph Neural Networks, Natural Language 

Processing, Binary Analysis, Open-Source Software Security, CycloneDX, SPDX, Machine Learning for Security 

1. Introduction 

Within the modern software development ecosystem, it is 

becoming more common to have applications which consist 

of many open-source libraries, commercial components, 

and transitive dependencies that create complex 

dependency graphs. Software Bill of Materials have 

become important artifacts that can be used to 

comprehend software composition, vulnerability 

management and secure supply chains. SolarWinds and 

Log4Shell are recent high-profile attacks that help to 

highlight the immediate need to have a full visibility of 

software components [3][4]. 

Previously used methods of traditional SBOM generation 

are based on manual cataloguing or on simple scanning 

programmes which extract package manager files [5][6].  

These approaches have a number of weaknesses: they 

cannot find embedded or obfuscated elements, they 

cannot find transitive dependencies in their entirety and 

they are not good at managing dynamically linked libraries 

[10] [11]. In addition, the software complexity that has 

been growing exponentially, with the current application 

having thousands of dependencies, has made manual 

methods practically infeasible. Artificial intelligence is a 

transformative prospect in order to revolutionize SBOM 

generation and management. With machine learning 
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algorithms, we can automatically identify components, and 

predict transitive dependencies, and we can also keep track 

of changes in software composition [7][8] [21]. Model AI 

can be trained on large collections of software packages in 

order to detect patterns that indicate the presence of 

components even with obfuscated or minimized code [12] 

[13]. 

 

 

Figure 1: Architecture of AI-Driven SBOM Generation System [2] 

Figure 1 describes multi-faceted AI-based framework. The 

system of natural language processing helps to analyze 

documentation and comments, graph neural network to 

model dependency relationships, and a convolutional 

neural network to binary analyze [9]. The framework is 

compatible with the infrastructure in place, and it produces 

SBOM outputs that meet the industry standard such as 

SPDX and CycloneDX formats. 

The rest of the paper will be structured in the following 

manner: Section 2 presents the related literature in the 

field of SBOM generation and the use of AI in software 

security. Section 3 describes our methodology in terms of 

architecture and algorithms. Section 4 gives experimental 

results and performance evaluation. The last section 5 has 

implications and future research directions. 

Artificial intelligence presents a transformative opportunity 

to revolutionize SBOM generation and management. By 

employing machine learning algorithms, we can automate 

component identification, predict transitive dependencies, 

and continuously monitor software composition changes. 

AI models can learn from vast repositories of software 

packages to recognize patterns that indicate component 

presence even in obfuscated or minimized code. 

This research introduces a comprehensive AI-driven 

framework that addresses these challenges through a 

multi-pronged approach. Our system combines natural 

language processing for analyzing documentation and 

comments, graph neural networks for modeling 

dependency relationships, and convolutional neural 

networks for binary analysis. The framework integrates 

with existing development pipelines and generates SBOM 

outputs compliant with industry standards including SPDX 

and CycloneDX formats. 

The remainder of this paper is organized as follows: Section 

2 reviews related work in SBOM generation and AI 

applications in software security. Section 3 details our 

methodology including the architecture and algorithms. 

Section 4 presents experimental results and performance 

evaluation. Section 5 concludes with implications and 

future research directions. 

2. Literature Review 

Automated SBOM generation has undergone massive 

changes in the last five years due to the growing regulatory 

demands and security issues [14] [15] [16]. Initial solutions 

were mainly based on the ideology of a static analysis of 

package manager manifests and the most recent solutions 

are based on the use of machine learning as a way to 

increase accuracy and coverage. This part is an overview of 

the important contributions between 2020 and 2025. 

Standard formats of software composition in traditional 

SBOM tools like SPDX-Tools and CycloneDX [19[20]. These 

tools however necessitate a lot of manual documentation. 

The latest studies have discussed automated methods: 
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dependency graph analysis, binary fingerprinting, and 

component classification with machine learning. AI 

techniques integration is the latest horizon in the given 

sphere of research [17][18]. Examination of the literature 

has identified multiple gaps in the research. First, the 

majority of methods are based on one analysis method 

instead of using several AI modalities. Second, little 

research exists concerning the problem of the constant 

updating of SBOMs in codebases that develop with a rapid 

pace. Third, automated systems are not well developed in 

license compliance detection. Our study fills these gaps 

with the multi-modal approach, which is based on the 

synthesis of strengths of different AI methods and is 

computationally-efficient. Table 1 represents the 

comparison among various systems developed for SBOM 

generation. The comparison is primarily based on accuracy. 

Table 1: Comparative Analysis of SBOM Generation Systems (2020-2025) 

Author Methodology  Key Contribution Accuracy Disadvantage 

Chen et al. (2020) [1] 
Static Dependency 

Analysis 

Graph traversal 

algorithms 
76.3% 

Missed dynamic 

dependencies 

Rodriguez et al. (2021) [2] Binary Fingerprinting Hash-based matching 82.1% High false positive rate 

Kim & Park (2022) [4] 
ML-based 

Classification 
Random Forest classifier 85.7% 

Limited to known 

packages 

Zhang et al. (2022) [5] Deep Learning SBOM CNN for code analysis 88.4% 
Requires large training 

data 

Anderson et al. (2023) [6] Hybrid Analysis 
Static + Dynamic 

combined 
89.9% 

Computationally 

expensive 

Liu & Wang (2023) [7] GNN for Dependencies Graph neural networks 90.8% Poor license detection 

Patel et al. (2024) [8] NLP-Enhanced SBOM Transformer models 92.3% Struggles with binaries 

Martinez et al. (2024) [9] Ensemble AI Methods Multi-model fusion 93.1% Complex implementation 

Our Approach (2025) 
Multi-Modal AI 

Framework 
NLP + GNN + CNN 94.7% 

Requires periodic 

retraining 

3. Methodology 

3.1 System Architecture 

The SBOM generation system is an AI-based system and 

follows 3-layer architecture comprising of input processing 

layer, AI analysis layer and an output generation layer. The 

input layer can receive several types of artifacts such as 

source code repositories, package manager files, container 

images, and compiled binaries. All of the input types are 

preprocessed and normalized and then submitted to 

special AI models. 

3.2 Model Components 

Our system consists of three specialized models of AI 

operating together as a core. The NLP recommends use of 

a fine-tuned version of BERT to process the source code 

comments, README files, and documentation to extract 

metadata of the component. The GNN module operates on 

dependency graphs to detect transitive dependency and 

version conflicts. The CNN Sniffer looks at patterns of binary 

in order to identify embedded libraries and a component 

that is obfuscated. 

3.3 Component Identification Algorithm 

The following algorithm describes our multi-stage 

component identification process: 

Algorithm 1: AI-Driven Component Identification 

Input: Source code repository R, dependencies D, binaries 

B 
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Output: Complete SBOM S with components C 

1: Initialize S ← ∅, C ← ∅ 

2: for each package file p ∈ D do 

3:     components ← ParsePackageFile(p) 

4:     C ← C ∪ components 

5: end for 

6: sourceFiles ← ExtractSourceFiles(R) 

7: embeddings ← NLP_Model.encode(sourceFiles) 

8: hiddenComponents ← 

ClassifyComponents(embeddings) 

9: C ← C ∪ hiddenComponents 

10: graph G ← BuildDependencyGraph(C) 

11: transitiveDeps ← GNN_Model.predict(G) 

12: C ← C ∪ transitiveDeps 

13: for each binary b ∈ B do 

14:     patterns ← ExtractBinaryPatterns(b) 

15:     embeddedLibs ← CNN_Model.detect(patterns) 

16:     C ← C ∪ embeddedLibs 

17: end for 

18: for each component c ∈ C do 

19:     c.vulnerabilities ← QueryVulnDB(c) 

20:     c.license ← DetectLicense(c) 

21:     c.confidence ← CalculateConfidence(c) 

22: end for 

23: C ← RemoveDuplicates(C) 

24: S ← GenerateSBOM(C, format=SPDX) 

25: return S 

3.4 Training and Validation 

We trained our models on a curated dataset comprising 

50,000 open-source projects from GitHub, 15,000 

container images from Docker Hub, and 8,000 enterprise 

applications. The training process employed transfer 

learning, starting from pre-trained models and fine-tuning 

on SBOM-specific tasks. We used cross-validation with an 

80-10-10 split for training, validation, and testing. Model 

performance was evaluated using precision, recall, F1-

score, and completeness metrics. 

3.5 Implementation Details 

The system was implemented in Python using PyTorch for 

deep learning models and NetworkX for graph operations. 

We integrated with popular package managers including 

npm, pip, Maven, and Gradle. The system generates SBOM 

outputs in both SPDX 2.3 and CycloneDX 1.5 formats. 

Processing time scales linearly with project size, averaging 

3.2 minutes for medium-sized projects with 500 

dependencies. 

4. Results and Discussion 

4.1 Performance Metrics 

In order to test our AI-based SBOM system, we tested it 

with the five base tools SPDX-Tools, Syft, Tern, Scancode 

and a commercial solution. We carried out the experiment 

on 1, 000 various projects comprising of web applications, 

mobile applications and enterprise systems. Our solution 

performed better in all assessment measures with an 

accuracy of 94.7% in the component identification, 

precision of 91.3% in vulnerability mapping and accuracy of 

96.2% in classifying licenses as shown in figure 2. 
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Figure 2: Comparative Performance Analysis of Proposed System with existing systems 

4.2 Component Coverage Analysis 

The capability of identifying all the components including 

transitive dependencies is a critical measure of SBOM 

quality is called completeness. Our system found that there 

are on average 847 components per project as opposed to 

632 components per project of the best baseline tool which 

is a 34 percent improvement. Here it is noteworthy that we 

identified 2,847 previously unidentified transitive 

dependencies in the test corpus that could not be identified 

by traditional tools because of the depth of their analyses. 

Figure 3 represents the relation between project 

complexity and processing time.  

 

 

Figure 3: Processing Time vs Project Complexity 

 
4.3 License Detection and Compliance 

One of the important challenges of SBOM management is 

license compliance. NLP-based license detection with our 

system had an accuracy of 96.2 percent on 15 common 

open-source licenses such as MIT, Apache 2.0, GPL variants 

and BSD licenses. The system was able to detect a conflict 

of license in 312 projects that would have led to violation of 

the compliance. This is much better than the old methods 

of use of regex which resulted in 78.4 percent accuracy in 

our test. 

4.4 Vulnerability Assessment 
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Automated security assessment was possible through 

integration with vulnerability databases (NVD, GitHub 

Advisory Database, OSV). Our system has found 4,782 

vulnerable components in the test corpus, and 91.3% of 

CVE match. The AI model produced a 67 percent reduction 

in false positives as compared to version-string matching 

alone in view of contextual influences 

4.5 Computational Efficiency 

Even though the computational cost of deep learning 

models can be high, our optimized model has a realistic 

performance. Projects with 500 dependencies took an 

average processing time of 3.2 minutes and increased 

linearly with the number of dependencies to 8.7 minutes 

with large projects with 1,000+ dependencies. This is a 78 

percent decrease over comprehensive manual analysis and 

45 percent enhancement over the best performing baseline 

tool in terms of completeness. 

4.6 False Positive Analysis 

False positive rates were also acceptable at 5.3 percent 

when it comes to component identification and 8.7 percent 

when it comes to vulnerability detection. The majority of 

false positives were, in fact, the similarities between 

internal and external packages in terms of naming, which 

we resolved by applying confidence scoring. All the 

components that score below 0.7 on the confidence scale 

are marked to be reviewed manually (only 3.1 percent of 

the components detected as such). 

5. Conclusion 

This study shows that automated SBOM generation and 

management can be greatly improved by AI-based 

methods. We have created a multi-modal system consisting 

of natural language processing, graph neural networks, and 

convolutional neural networks, and with an accuracy of 

94.7 percent in component identification, our multi-modal 

system consumes 78 percent less time to process an image 

than conventional systems. The fact that 34% more 

components are uncovered by the system, including 

undetected transitive dependencies, would provide 

significant visibility of the supply chain of software. The 

value of this work in practice is enormous. Our framework 

fits into the CI/CD pipelines of organizations to keep 

constantly updated SBOMs by doing relatively little manual 

work. The automated vulnerability scan and license 

compliance checking takes care of the urgent security and 

legal need presented by current laws such as the Executive 

Order 14028 and the EU Cyber Resilience Act. The 96.2% 

license detection rate is also a major gap in automated 

SBOM tools that has been filled for a long time. There are 

various limitations that should be considered. First, we have 

to train our models periodically to ensure that it is still 

accurate since new packages and frameworks are 

emerging. Second, the performance of the system is 

reduced with proprietary or highly customized components 

that are not found in training data. Third, even though we 

support a variety of programming languages, we are best at 

supporting JavaScript, Python and Java ecosystems where 

the most training data is readily available. The research 

directions of the future involve language coverage, adding 

runtime analysis in relation to dynamic dependency 

resolution and creation of federated learning strategies to 

enhance the performance of the models without violating 

the proprietary code confidentiality. It could be improved 

by integrating with blockchain-based verification systems to 

provide SBOM integrity and provenance tracking. 

Moreover, the extension of the framework with firmware 

and hardware components would meet the new 

requirements in IoT and embedded systems security. To 

sum up, AI-based SBOM generation is an important 

development in the field of software supply chain security. 

With the ever-increasing software complexity and stress on 

regulatory demands, automated intelligent systems will be 

essential in ensuring that the entire software inventories 

are maintained. The work serves as the basis of the next-

generation SBOM tools that can be updated to meet the 

current development practices and increase the level of 

security posture and assurance of compliance. 
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