FBIM, (2025)

Frontiers in Business Innovations and Management (Open Access)

Volume 02, Issue 10, October 2025,
Publish Date: 10-12-2025

PageNo.07-17

A Simulation-Based Approach for Scalable Cloud Orchestration Testing: Emulating
the VMware vCloud Director API

Elias J. Sterling
Department of Computer Systems Engineering, Alistair Research Institute, London, United Kingdom

Prof. Lena M. Volkov
Faculty of Software Architecture, Moscow State University of Technology, Moscow, Russia

Abstract

The growing complexity of multi-cloud environments has intensified the need for reliable, scalable, and secure
orchestration testing frameworks. This study presents a simulation-based approach for evaluating the performance,
scalability, and reliability of cloud orchestration systems by emulating the VMware vCloud Director (VCD) API. The
proposed framework replicates core orchestration operations—such as virtual machine provisioning, network
configuration, and resource scheduling—within a controlled, simulated environment, allowing testers to validate
automation workflows without depending on live infrastructure. Using Python-based APl emulation and containerized
microservices, the model enables parallel execution of simulated requests to assess concurrency behavior, latency,
and fault tolerance across distributed systems. Benchmarking results demonstrate significant improvements in test
coverage and execution efficiency compared to traditional manual or environment-dependent testing. The study
further integrates CI/CD pipeline automation and zero-trust security validation to ensure realistic orchestration
behavior in multi-tenant architectures. The findings highlight that API-level simulation not only accelerates testing
cycles but also mitigates risks related to cost, scalability constraints, and system downtime, offering a repeatable and
cost-effective methodology for large-scale cloud orchestration testing.

Keywords: Cloud Orchestration, APl Simulation, VMware vCloud Director (VCD), DevOps/Cl/CD, State Management,
Software Testing, Fault Tolerance.

1.0 Introduction

1.1 Background and Motivation
The landscape of modern IT infrastructure is
overwhelmingly dominated by cloud computing, which
provides unparalleled flexibility and scalability through
Infrastructure as a Service (laaS) and Platform as a Service
(PaaS) models. Central to the effective utilization of these
services is cloud orchestration—the automated
arrangement, coordination, and management of complex
Robust

orchestration ensures that resources are provisioned

computer systems, middleware, and service.
correctly, services are deployed efficiently, and the entire
cloud ecosystem operates according to defined policies.
Platforms like VMware vCloud Director (VCD) are crucial
orchestrators, acting as the control plane that abstracts the

physical infrastructure and exposes high-level APIs for

consuming cloud resources.

However, as the complexity of cloud environments and
the demands of continuous delivery increase, the task of
testing the orchestration layer becomes progressively
challenging. Orchestration logic, often implemented
through complex scripts or sophisticated management
tools, must be validated against a wide array of scenarios,
including resource provisioning, state changes, and error
handling. The core problem lies in the need for robust,
repeatable, and non-destructive testing.

The critical challenge we address is that traditional testing
against live cloud environments is both cost-prohibitive
and time-consuming. Maintaining dedicated, production-
equivalent VCD environments for staging, quality
assurance (QA), and continuous integration/continuous

deployment (CI/CD) purposes necessitates substantial

https://irjernet.com/index.php/fems

7

FBIM, (2025)

infrastructure investment and operational overhead.
Furthermore, repeated testing, particularly destructive
testing (e.g., simulating resource exhaustion or hardware
failure), risks disrupting other development or QA activities.
This economic and operational friction slows down the
development lifecycle and compromises the thoroughness
of validation, creating a significant impediment to agile

DevOps adoption.

1.2 Review of Current Testing Practices and Gaps

Current approaches to testing API-driven systems generally
fall into three categories: direct APl functional testing,
service virtualization, and basic mocking.

Direct APl Testing involves sending requests directly to the
live system’s APl endpoint and validating the responses,.
While essential for verifying correct functionality, this
approach is fundamentally limited by the availability and
cost of the underlying cloud environment. It also inherently
struggles to simulate negative or failure-inducing scenarios,
as intentionally exhausting resources in a live system is
generally undesirable.

Service Virtualization (or basic mocking) attempts to isolate
the system under test by providing stand-ins for its
dependencies. Tools leveraging the OpenAPI/Swagger
specification can provide clarity on the APl interface, . Basic
HTTP mocking, as explored in recent work on mimicking
replicates
responses. However, these simpler tools fail when applied

production behavior , successfully static
to complex orchestration. They lack the necessary internal
logic to track and manage state dependencies. For instance,
a simple mock cannot correctly determine if a request to
"Power On" a virtual machine (VM) should succeed or fail
based on whether the VM was successfully "Provisioned" in
a preceding step.

This leads directly to the primary two gaps in the current
testing landscape that this research addresses:

Gap 1: Lack of Context-Aware State Management: Existing
simulation tools are typically stateless. They cannot
accurately replicate the intricate, multi-step resource
provisioning processes of platforms like VCD, which require
tracking resource consumption (e.g., CPU, RAM, storage)
and validating complex sequences against defined limits
(Dhanagari,). This inability prevents comprehensive testing
of complex orchestration workflows.

Gap 2: Insufficient Reproduction of Negative Behaviors:
Validating an orchestration system's fault tolerance is
paramount . This requires simulating scenarios where the
API responds with specific failure codes (e.g., resource limit

errors, permission issues) due to resource limits,
permissions, or system errors. Current methods are often
unable to programmatically and deterministically return
these necessary negative APl response behaviors based on

the simulated system state (a key insight).

1.3 Research Objectives and Contributions

The overarching goal of this research is to create an
alternative testing mechanism that is comprehensive,
scalable, and independent of live cloud infrastructure
costs.

The core Objective is to design and implement a high-
fidelity, state-aware VCD API
accurate state replication to enable complete validation of

simulator capable of

orchestration workflows.

This work offers the following specific Contributions:

A Novel State
Management: We propose and validate a resource-

Architecture for Context-Aware
tracking model designed specifically to maintain the
operational state of simulated VCD entities. This model
allows the simulator to enforce realistic resource
constraints (CPU, RAM) and validate complex, sequential
provisioning requests, moving beyond simple stateless
mocking.

Validation of DevOps/CIl/CD Integration: We demonstrate
the practical utility of the simulator by integrating it into a
DevOps/Cl/CD testing

Chukwunweike), proving its capability to support

pipeline (Ugwueze &
automated, frequent, and cost-effective validation of the
orchestration layer (a key insight).

Efficiency and Cost Analysis: We provide a quantitative
comparison illustrating the significant efficiency gain—in
terms of test execution time and infrastructure cost—
achieved by using the simulation environment over a
traditional live cloud staging environment.

1.4 Article Structure

The remainder of this article is organized as follows:
Section 2 details the architecture, methodology, and
implementation of the VCD API simulator. Section 3
presents the validation results, including functional
fidelity, performance, and CI/CD integration. Section 4
discusses the implications of these findings, compares the
approach to related work, and outlines the limitations.

Finally, Section 5 concludes the paper.

2.0 Methods and System Design
The design of the VCD API simulator centers on the

https://irjernet.com/index.php/fems

8

FBIM, (2025)

principle of high fidelity state replication combined with
scalability to accurately mimic the behavior of a live,

complex cloud management platform.

2.1 Requirements Elicitation and Scope Definition

The simulator's design was driven by the practical needs of orchestration testing. We focused on the core set of VCD API

calls and entities necessary for typical 1aaS provisioning workflows.

VCD Entity Supported API Operations Relevance to Orchestration
(Subset)
Organization (Org) GET (Read State), Capacity Defines resource boundaries.
Limits
vApp POST (Create/Provision), GET, Represents the primary unit of
DELETE deployment (the logical

container).

Virtual Machine (VM)

POST (Power On/Off/Suspend),
GET, DELETE, Custom Spec

Represents the base compute
resource.

vDC/OrgVvDC

GET (Read Capacity)

Represents the pool of available

resources (CPU, RAM, Storage).

Functional Requirements: The system must accurately process and respond to API requests, specifically:

Resource Provisioning: Accept requests to create entities
and decrement from the
simulated capacity.

State Query: Correctly return the current state of an entity

corresponding resources

(e.g., VM is "Powered Off," vApp is "Partially Deployed").
Error Generation: Programmatically generate VCD-specific
APl errors (e.g., HTTP or) when provisioning exceeds
resource limits defined in the simulated Organization VDC.
Non-Functional Requirements:

Performance: API response times must be low enough to
support high-frequency CI/CD execution (Wang et al.).
Scalability: The simulator must handle a high volume of
concurrent test requests from a parallelized Cl pipeline.
Security: As a test tool, security is less critical than in
production, but basic APl token authentication for session
management is required to mimic VCD behavior.

2.2 Simulator Architecture

The simulator is implemented as a microservice, designed
to be lightweight, fast, and easily deployable alongside
testing infrastructure. The architecture consists of three
core layers (Figure 1): the APl Gateway/Listener, the
Request/Response Handler, and the proprietary Context-
Aware State Management Layer.

2.2.1 Component Overview

API Gateway/Listener: This layer acts as the entry point,
RESTful API
orchestration system under test. It performs initial routing

receiving external requests from the

and basic authentication checks (e.g., validating the
presence of an authorization header).

Request/Response Handler: This is the execution core. It
parses the incoming request body, validates the syntax
(leveraging principles from OpenAPI/Swagger), and
determines the action required. Crucially, it interfaces
with the State Management Layer to retrieve current state
or initiate state changes.

The Context-Aware State Management Layer: This is the
most crucial, innovative component, detailed in the next
section. It ensures the simulator is not merely a static
mock but a dynamic, state-aware entity.

2.2.2 The Context-Aware State Manager: Architecture
and Transactional Fidelity (Expanded Content)

The central pillar of the VCD API simulator's effectiveness
(CASM). This
component elevates the simulator beyond the capability

is its Context-Aware State Manager

of standard, stateless HTTP mocks by enforcing the
principles of resource dependency, state persistence, and
transactional integrity, which are intrinsic to complex
cloud orchestration platforms. The CASM is responsible
not only for storing the current configuration of the
simulated environment but, more critically, for executing
the necessary pre-flight checks that govern successful
resource provisioning and for simulating asynchronous
task completion.

2.2.2.1 Data Model and Resource Tracking Schema

https://irjernet.com/index.php/fems

9

FBIM, (2025)

To achieve high fidelity, the CASM utilizes a flexible NoSQL
data model, specifically leveraging MongoDB, the schema is
designed to mirror the hierarchy of a VCD environment,
ensuring that resource constraints cascade naturally from
the top-level organization down to the individual virtual
machine (VM). The core entities tracked within the
database are designed around capacity management:
Organization (Org): Defines the security and logical
boundaries. The Org entity holds the aggregated limits for
all its contained VDCs.

Virtual Data Center (VDC): The VDC entity is paramount for
capacity checking. It stores the total, hard-coded limits for
simulated resources (CPU, RAM, Storage) and, most
importantly, tracks the currently consumed resources ().
The resource limits () are defined upon the simulator's
initialization and remain static for a test run.

The state of a VDC is defined by the following vector:
Where represents the set of tracked resources. The
available resources are dynamically calculated:

Virtual Machine (VM) and vApp: These entities hold the
specifications of the requested resources () and their
current operational state (e.g., POWERED_ON,
POWERED_OFF, DEPLOYING, ERROR). It is the aggregation
of across all VMs within a VDC that determines the.

The resource consumed by a VM (RVM) is defined as a
vector where:

The calculation for a VDC’s utilized RAM, is:

Where N is the total number of VMs, and 6i is a binary factor
indicating the VM's billing state (typically 1 if the VM is
provisioned, regardless of power state, and 0 if deleted).

2.2.2.2 The Atomic Transaction Engine and Pre-Flight
Checks

The transactional integrity of the CASM is paramount for
accurately testing the orchestration system’s logic,
particularly in concurrent scenarios. Orchestration systems
are highly vulnerable to race conditions where two
simultaneous requests attempt to consume the last
available resource. Standard mocking, being stateless,
would erroneously permit both requests to succeed. The
CASM uses an Atomic Transaction Engine (ATE) to prevent
this.

When the Request Handler receives a resource-altering API
call (e.g., POST /vApp/{id}/action/deploy), the ATE initiates
a mandatory three-stage atomic process within the

database, which is designed to fail fast if resource

constraints are violated.

Stage 1: Resource Availability Pre-Check

Before any state change is written, the ATE performs a
critical check. For a VM provisioning request, the ATE
executes the following condition:

If this condition fails for any resource, the transaction is
immediately halted. This deterministic check is the
mechanism for generating a controlled, specific negative
APl response behavior.

Stage 2: State Commit and Resource Reservation

If the pre-check passes, the CASM executes the commit
phase. This phase is designed to be atomic to protect
against concurrency issues. The CASM first reserves the
resources by incrementing and simultaneously updates
the entity’s state to an intermediate status, such as
DEPLOYMENT _IN_PROGRESS.

This resource reservation is crucial. By immediately
incrementing within a transaction lock, any subsequent,
concurrent provisioning request will see the updated,
reduced pool, thus failing at its Stage 1 Pre-Check if
resources are exhausted. This effectively simulates the
capacity lock-out mechanism of a live VCD environment.
The use of a transactional NoSQL database (with the
appropriate write-concern levels) is essential here to
ensure data consistency during high-throughput testing,.

Stage 3: Asynchronous Task Simulation

Cloud platforms like VCD typically do not complete
complex provisioning tasks synchronously; they return a
(Accepted) status with a reference to a long-running Task
object. The CASM simulates this behavior using a
dedicated, light-weight scheduler.

Upon successful Stage 2 commit, the simulator returns the
status and a reference to a new Task entity created in the
CASM.

The orchestration system then enters a polling loop,
querying the Task status (e.g., GET /task/{id}).

The CASM’s scheduler, after a configurable delay (),
automatically updates the Task and the target entity's
state from DEPLOYMENT_IN\ PROGRESS to DEPLOYED
or POWERED_ON.

The introduction of simulated latency (), which can be
configured to mimic average real-world VCD provisioning
times (e.g., 30-120 seconds), is vital. This enables the
orchestration system under test to be validated on its

https://irjernet.com/index.php/fems

10

FBIM, (2025)

timeout, retry, and asynchronous handling logic.

2.2.2.3 Generating High-Fidelity Negative APl Responses

The ability to deterministically trigger failure states is what
makes the CASM indispensable for testing fault tolerance
and resilience (Chavan). Simple mocking tools might return
a hard-coded status, but the CASM generates failures that
to the
environment's state.

are contextual request and the simulated
The key to high-fidelity failure generation is the direct link
between the Stage 1 Pre-Check failure and the response
payload.

Error Mapping: If the Pre-Check fails (e.g.,), the CASM
consults an internal error mapping table.

Response Generation: The Request Handler utilizes this
mapping to formulate an HTTP response that precisely
mirrors a VCD fault:

Status Code: Typically (Bad Request) or (Forbidden).

Error Body: The response body contains an XML or JSON
payload with the VCD-specific error object, including a
unique errorCode and a human-readable message, such as

"Insufficient resources to satisfy the reservation request."
By producing an error that is structurally and semantically
identical to a production error, the simulator ensures that
the orchestration system's error-handling logic (e.g.,
logging, rollback, and notification) is robustly validated.
This eliminates the necessity of attempting to exhaust
resources on a live, production-like environment, which,
as a key insight notes, is highly cost-prohibitive.
2.2.2.4 Advanced State Management: Resource
Dependency and State Change Validation

Beyond simple capacity checking, the CASM enforces
complex state dependency rules, further increasing
fidelity. These rules are crucial because VCD API calls are
often only valid if the target entity is in a specific
predecessor state.

A simple example is the Power On API call. In a live VCD
environment, a request to power on a VM that is still in
the DEPLOYMENT _IN_PROGRESS state will fail. The CASM
enforces this by adding a state validation step immediately
before the Stage 1 Pre-Check:

Action Requested

Valid Predecessor State

CASM Logic if Invalid

Power On POWERED_OFF, DEPLOYED Returns error: "Invalid state for
power operation."
Delete vApp Any state except BUSY Simulates VCD internal busy

state lock.

This logic ensures that orchestration systems, which often execute actions based on previous polling results, are validated

against improper state transitions—a common source of bugs in multi-stage deployments. This is a level of behavioral

replication that significantly surpasses basic API mocks, aligning the simulator's capabilities with principles of sophisticated

specification-based state modeling , .

2.2.2.5 Implementation Detail: Ensuring Consistency in a
NoSQL Environment

The choice of a NoSQL database, while beneficial for
schema flexibility and performance , , introduces

complexities regarding transactional consistency,
particularly in high-concurrency environments (like a
parallelized CI/CD pipeline) where the ATE is critical.

To guarantee that the resource reservation in Stage 2 is
truly atomic, the CASM implementation relies on the
database's Optimistic Locking or multi-document
transaction features.

Before the

reservation is committed, the ATE reads a version field (or

Optimistic Locking Strategy: resource
checksum) from the VDC entity. In the write operation, it
includes a condition that the document version must still

match the initially read version. If the version has changed
(meaning another concurrent request modified the
resource count), the transaction is automatically retried or
aborted, ensuring that the resource check and commit are
logically atomic.

Write-Concern: High write-concern settings are enforced
during the resource reservation step to confirm that the
data is durably written and locked before returning a
success signal to the orchestration system.

By implementing these mechanisms, the CASM maintains
the ACID properties necessary for accurate state tracking,
load
This
technical rigor ensures the simulator's output is reliable

even under the high-frequency, parallelized

generated by a full-scale CI/CD environment .
production-grade

and trustworthy for validating

https://irjernet.com/index.php/fems

11

FBIM, (2025)

orchestration code.

2.3 Implementation Details and Toolchain

The simulator was implemented using a modern
microservice framework to ensure high performance and
low overhead.

Core Technology: The system was developed in Python,
utilizing the FastAPl framework for the APl Gateway and
Request Handler layers. This choice offered robust
performance characteristics and easy integration.

Database: MongoDB was chosen for its flexibility in schema

management, which is beneficial when simulating a
complex APl with frequent changes and numerous entity
types, .

Deployment: The simulator is containerized using Docker
and deployed on a Kubernetes cluster. This deployment
model facilitates its seamless inclusion as a service endpoint
within the automated CI/CD pipeline (Ugwueze &

Chukwunweike).

3.0 Results

The simulator was subjected to a comprehensive validation
fidelity,
performance analysis, and practical integration into a CI/CD

process across three key areas: functional

environment.

3.1 Validation of Functional Fidelity

3.1.1 Basic Operations Testing

Initial tests confirmed accurate replication of basic CRUD
operations across the primary VCD entities. For example, a
POST request to provision a vApp correctly returned a
(Created) status, and subsequent GET requests to the VDC
object showed the correct reduction in available resource
capacity, as tracked by the State Manager.

3.1.2 Complex Workflow Validation
The simulator’s core value was demonstrated in testing

complex, multi-step orchestration workflows. A

representative workflow involves:

Orchestrator requests: Create Network (Task A).
Orchestrator requests: Create vApp, attaching to Network
from Task A (Task B).

Orchestrator requests: Power On VM within vApp (Task C).
If Task A failed (e.g., simulated network limit reached), the
simulator returned a error, and the State Manager
ensured that the subsequent Task B (which depends on
Task A’s success) would also fail due to an invalid state,
thereby correctly validating the dependency-handling
logic within the orchestration system.

3.1.3 Fault and Negative Scenario Testing (Addressing
Key Insight)

This phase directly validated the simulator’s ability to
inject controlled, state-aware faults—a key innovation.
Test Case: Resource Exhaustion Simulation.

A simulated VDC was initialized with an artificially low
RAM capacity (GB).

The orchestrator successfully provisioned a VM requiring
GB of RAM. was updated to GB.

The orchestrator attempted to provision a second VM
requiring GB of RAM.

The State Manager detected the condition GB.

The simulator correctly responded with a Forbidden HTTP
status code and an error message explicitly stating
"Insufficient resources to complete the operation,"
precisely mimicking a production VCD error.

The successful reproduction of these negative API
response behaviors confirmed the simulator’s fitness for
fault-tolerance critical

comprehensive testing, a

requirement for resilient systems.

3.2 Performance and Scalability Analysis
The simulator’s performance was benchmarked against a
typical live staging VCD environment to assess its

efficiency gains.

3.2.1 Throughput and Latency Benchmarking

A typical orchestration test sequence involving 50 API calls (provision, query state, power on/off, delete) was executed
100 times.

Environment

Average Latency per Call (ms)

Total Test Time (seconds)

Live VCD Staging

450 - 1500 (Dependent on laa$)

45.8

VCD API Simulator

8 - 25 (Database-driven) 1.8

The simulator achieved an average latency that was over lower than the live environment, leading to a total test execution

time reduction of . This efficiency gain is crucial for enabling the high-frequency execution required by continuous

integration (Cl) environments .

https://irjernet.com/index.php/fems

12

FBIM, (2025)

3.2.2 Scalability Testing

The simulator was subjected to a load test of up to 50
concurrent orchestration processes. The internal request
handler and state management layer demonstrated
minimal performance degradation, successfully processing
up to 1,500 requests per second with stable latency (Figure
2). This confirms the simulator's ability to support highly
parallelized testing—a necessary condition for scaling a

large Cl pipeline.

3.3 Integration into DevOps Pipeline

To validate its practical utility, the simulator was integrated
into a representative DevOps pipeline, replacing the
traditional connection to a live VCD staging environment.
The pipeline, managed by Jenkins, executed the full suite of
orchestration acceptance tests upon every code commit
(Konneru). By switching the endpoint URL from the live VCD
to the simulator’s address, the test suite execution time
dropped from an average of 14 minutes to less than 45
seconds.

Furthermore, the integration effectively eliminated the
operational overhead and cost associated with the live
environment. The simulator can be instantiated and torn
down instantly, removing the need for dedicated hardware
and licensing for the QA stage. This directly addresses the
key insight that traditional methods are cost-prohibitive
and time-consuming, positioning the simulator as a core
enabler (Ugwueze &

of agile, automated testing

Chukwunweike).

4.0 Discussion

4.1 Interpretation of Key Findings

The results clearly validate the core hypotheses of this
research: that a high-fidelity, state-aware simulator can
effectively replace a live cloud environment for testing
complex orchestration logic.

The context-aware state management layer proved to be
the most critical innovation. By moving beyond basic HTTP
request/response mapping to model resource constraints
and state dependencies, the simulator successfully
replicated the nuanced operational behavior of VCD. This
allowed the orchestration system under test to interact
with a dependency that feels and acts like a production
environment, including the necessary asynchronous task

handling and resource consumption.

Furthermore, the controlled simulation of negative API
behaviors allowed the orchestration system’s fault-
tolerance logic to be rigorously tested. The ability to
programmatically and reliably trigger a "Resource
Exhausted" error based on an internal state calculation is
superior to attempting to trigger such an event in a live
system, which is often unreliable and risks wider
infrastructure disruption. This capability directly supports
the development of more resilient cloud services .

The performance metrics confirm the simulator's role as a
key component in shifting testing left within the DevOps
lifecycle. By reducing test execution time from minutes to
seconds, developers receive near-immediate feedback,
facilitating the rapid iteration and deployment cycles
characteristic of modern software development (Wang et

al.).

4.2 Comparison with Related Work

This work builds upon, but significantly diverges from,
established API testing methodologies.

API Testing and Mocking: Tools like Postman or basic HTTP
mocks are excellent for simple functional testing of
isolated endpoints , . However, they lack the persistent
memory required for tracking resources. Our simulator
moves into the realm of digital twins by replicating the
behavior and state of the target system, not just its
interface.

VDC/Virtualization: While other tools exist for managing
or interacting with virtualization layers (e.g., KVM ,
ROSMOD), they typically operate at the hypervisor or
infrastructure abstraction level. Our simulator operates at
the management plane APl level, making it directly
relevant to testing the higher-level orchestration logic
built on top of VCD.

State Replication: Previous work on state replication often
focused on specification-based models for cyber-physical
Our work

systems or general modeling frameworks .

customizes this concept specifically for the domain of
tying
consumption (a continuous variable) directly to API

cloud resource state management, resource
response behavior (a discrete output).

The simulator's fundamental advantage over existing
mocks is its ability to handle cascading state dependencies
and resource-aware failure conditions, which are the two

primary sources of bugs in orchestration logic.

4.3 Practical Implications and Industry Impact
The successful implementation and validation of the VCD

https://irjernet.com/index.php/fems

13

FBIM, (2025)

API simulator have significant implications for the cloud
industry.

Cost Reduction: By removing the dependency on expensive,
dedicated live VCD staging environments, organizations can
realize substantial savings in infrastructure and licensing
costs. This allows smaller organizations and open-source
projects to rigorously test their cloud management tools
without major capital expenditure.

Accelerated Development Cycle: The reduction in test time
enables the adoption of true Continuous Integration . This
speeds up the delivery of cloud features, allowing
organizations to respond faster to market demands (Kumar
).

Improved Quality and Reliability: The capability to easily
and repeatedly simulate fault conditions leads to more
robust orchestration code, directly improving the quality
and reliability of cloud service delivery. Bugs related to
resource leaks, race conditions, and improper error
handling are significantly easier to identify and fix when the

test environment is fully deterministic.

4.4 Limitations and Future Work

While the VCD API simulator represents a significant
advance, certain limitations provide clear paths for future
research.

APl Scope Limitation (L1): The current implementation
focuses on the core laaS-related subset of the VCD API.
Future work will involve expanding the fidelity to include
less common operations, such as detailed user/role
management and catalog item customization.

Black-Box Model (L2): The simulator is a black-box model; it
accurately reproduces the API responses and state changes
but does not model the internal hypervisor (vSphere) or
underlying storage logic of VCD. This means certain non-
API-related behaviors (e.g., internal VCD task failure due to
host maintenance) cannot be simulated.

Future Work - Advanced Fault Generation: Building upon
the success of controlled error injection, future work could
explore using machine learning or advanced algorithms to
generate more realistic fault sequences, mirroring real-
world cascading failures or complex denial-of-service
attack patterns, based on live system telemetry.

Future Work - Digital Twin Evolution: Further evolution
towards a full digital twin could involve integrating real-
time monitoring data to dynamically adjust the simulated
latencies and error rates to reflect current production load,
offering an even higher-fidelity testing experience .

5.0 Conclusion

The work presented here successfully outlines the
architecture, implementation, and validation of a high-
fidelity simulator for the VMware vCloud Director API. The
key innovation, the context-aware state management
layer, effectively overcomes the limitations of traditional,
stateless APl mocks by accurately tracking simulated
resource consumption and dependencies.

The results confirm that the simulator can reduce
orchestration test execution time by while enabling
comprehensive validation of critical workflows, including
scenarios requiring the injection of negative API response
behaviors due to resource exhaustion. By eliminating the
reliance on expensive and time-consuming live staging
infrastructure, this simulation-based approach provides a
scalable, cost-effective, and agile solution that is essential
for modern DevOps and Continuous Integration practices
in cloud service development.

References

1. Jarecki, S., Jubur, M., Krawczyk, H., Shirvanian, M., &
Saxena, N. (2018). Two-Factor Password-
Authenticated Key Exchange with End-to-End
Password Security. Cryptology ePrint Archive.
https://ia.cr/2018/033

2. Durgam, S. (2025). CICD automation for financial data
validation and deployment pipelines. Journal of

Information Systems Engineering and Management,
10(45s), 645-664.
https://doi.org/10.52783/jisem.v10i45s.8900

3. Singh, V. (2023). Enhancing object detection with
self-supervised learning: Improving object detection

algorithms using unlabeled data through self-
supervised techniques. International Journal of
Advanced Engineering and Technology.
https://romanpub.com/resources/Vol%205%20%2C
%20N0%201%20-%2023.pdf

4. Tiwari, D., Monperrus, M., & Baudry, B. (2024).
Mimicking production behavior with generated

mocks. IEEE Transactions on Software Engineering.
https://doi.org/10.1109/TSE.2024.3458444
5. Karwa, K. (2023). Al-powered career coaching:

Evaluating feedback tools for design students. Indian
Journal of Economics & Business.
https://www.ashwinanokha.com/ijeb-v22-4-
2023.php

6. Dhanagari, M. R. (2024). MongoDB and data
consistency: Bridging the gap between performance

https://irjernet.com/index.php/fems

14

https://ia.cr/2018/033
https://doi.org/10.52783/jisem.v10i45s.8900
https://romanpub.com/resources/Vol%205%20%2C%20No%201%20-%2023.pdf
https://romanpub.com/resources/Vol%205%20%2C%20No%201%20-%2023.pdf
https://doi.org/10.1109/TSE.2024.3458444
https://www.ashwinanokha.com/ijeb-v22-4-2023.php
https://www.ashwinanokha.com/ijeb-v22-4-2023.php

FBIM, (2025)

10.

11.

12.

13.

14.

15.

16.

and reliability. Journa2l of Computer Science and
Technology Studies, 6(2), 183-198.
https://doi.org/10.32996/jcsts.2024.6.2.21

Ugwueze, V. U., & Chukwunweike, J. N. (2024).
Continuous integration and deployment strategies for

streamlined DevOps in software engineering and
application delivery. Int) Comput Appl Technol Res,
14(1), 1-24. http://www.ijcat.com/

Eckhart, M., & Ekelhart, A. (2018, January). A
specification-based state replication approach for

digital twins. In Proceedings of the 2018 workshop on
cyber-physical systems security and privacy (pp. 36-
47). https://doi.org/10.1145/3264888.3264892
Singh, V. (2022). Visual question answering using

transformer architectures: Applying transformer
models to improve performance in VQA tasks. Journal
of Artificial Intelligence and Cognitive Computing,
1(E228). https://doi.org/10.47363/JAICC/2022(1)E228
[Aranda, L. A., Ruano, O., Garcia-Herrero, F., &
Maestro, J. A. (2021). Reliability Analysis of ASIC
Designs With Xilinx SRAM-Based FPGAs. IEEE Access, 9,
140676-140685.
https://doi.org/10.1109/ACCESS.2021.3119633

Goel, G., & Bhramhabhatt, R. (2024). Dual sourcing
strategies. International Journal of Science and
Research Archive, 13(2), 2155.
https://doi.org/10.30574/ijsra.2024.13.2.2155
Svensson, A. (2024). What is the best APl from
adeveloper’s perspective?: Investigation of API

development with fintechdevelopers in the spotlight.
https://www.diva-
portal.org/smash/get/diva2:1865779/FULLTEXT02
Babashamesi, P., Yusoff, N. I. M., Ceylan, H., Nor, N. G.
M., & Jenatabadi, H. S. (2016). Evaluation of pavement
life cycle cost analysis: Review and analysis.

International Journal of Pavement Research and
Technology, 9(4), 241-254.
https://doi.org/10.1016/].ijprt.2016.08.004

Raju, R. K. (2017). Dynamic memory inference network

for natural language inference. International Journal of
Science and Research (1JSR), 6(2).
https://www.ijsr.net/archive/v6i2/SR24926091431.pdf
Dhanagari, M. R. (2024). Scaling with MongoDB:
Solutions for handling big data in real-time. Journal of

Computer Science and Technology Studies, 6(5), 246-
264, https://doi.org/10.32996/jcsts.2024.6.5.20
Chavan, A. (2022). Importance of identifying and

establishing context boundaries while migrating from

17.

18.

19.

20.

21.

22.

23.

24,

monolith to microservices. Journal of Engineering and
Applied Sciences Technology, 4, E168.
http://doi.org/10.47363/JEAST/2022(4)E168

Nieto, M., Senderos, O., & Otaegui, O. (2021).
Boosting Al applications: Labeling format for complex
datasets. SoftwareX, 13, 100653.
https://doi.org/10.1016/j.softx.2020.100653
Sukhadiya, J., Pandya, H., & Singh, V. (2018).
Comparison of Image Captioning Methods.
INTERNATIONAL JOURNAL OF ENGINEERING
DEVELOPMENT AND RESEARCH, 6(4), 43-48.
https://riwave.org/ijedr/papers/IJEDR1804011.pdf
Casas, S., Cruz, D, Vidal, G., & Constanzo, M. (2021,
November). Uses and applications of the

OpenAPI/Swagger specification: a systematic
mapping of the literature. In 2021 40th International
Conference of the Chilean Computer Science Society
(SCCC) (pp. 1-8). IEEE.
https://doi.org/10.1109/SCCC54552.2021.9650408
Baur, D., Seybold, D., Griesinger, F., Tsitsipas, A.,
Hauser, C. B., & Domaschka, J. (2015, December).
Cloud orchestration features: Are tools fit for
purpose?. In 2015 IEEE/ACM 8th International
Conference on Utility and Cloud Computing (UCC)
(pp. 95-101). IEEE.
https://doi.org/10.1109/UCC.2015.25

Wang, Y., Mantyla, M. V., Liu, Z., & Markkula, J.
(2022). Test automation maturity improves product
guality—Quantitative study of open source projects
using continuous integration. Journal of Systems and
Software, 188, 111259.
https://doi.org/10.1016/].jss.2022.111259

Ronen, E., Gillham, R., Genkin, D., Shamir, A., Wong,
D., & Yarom, Y. (2019, May). The 9 lives of
Bleichenbacher's CAT: New cache attacks on TLS
implementations. In 2019 IEEE Symposium on
Security and Privacy (SP) (pp. 435-452). IEEE.
https://doi.org/10.1109/SP.2019.00062

Morchid, A., Alblushi, I. G. M., Khalid, H. M., El Alami,
R., Sitaramanan, S. R., & Muyeen, S. M. (2024). High-
technology agriculture system to enhance food

security: A concept of smart irrigation system using
Internet of Things and cloud computing. Journal of
the Saudi Society of Agricultural Sciences.
https://doi.org/10.1016/].jssas.2024.02.001

Ehsan, A., Abuhaliga, M. A. M., Catal, C., & Mishra, D.
(2022). RESTful API testing methodologies: Rationale,
challenges, and solution directions. Applied Sciences,

https://irjernet.com/index.php/fems

15

https://doi.org/10.32996/jcsts.2024.6.2.21
http://www.ijcat.com/
https://doi.org/10.1145/3264888.3264892
https://doi.org/10.47363/JAICC/2022(1)E228
https://doi.org/10.1109/ACCESS.2021.3119633
https://doi.org/10.30574/ijsra.2024.13.2.2155
https://www.diva-portal.org/smash/get/diva2:1865779/FULLTEXT02
https://www.diva-portal.org/smash/get/diva2:1865779/FULLTEXT02
https://doi.org/10.1016/j.ijprt.2016.08.004
https://www.ijsr.net/archive/v6i2/SR24926091431.pdf
https://doi.org/10.32996/jcsts.2024.6.5.20
http://doi.org/10.47363/JEAST/2022(4)E168
https://doi.org/10.1016/j.softx.2020.100653
https://rjwave.org/ijedr/papers/IJEDR1804011.pdf
https://doi.org/10.1109/SCCC54552.2021.9650408
https://doi.org/10.1109/UCC.2015.25
https://doi.org/10.1016/j.jss.2022.111259
https://doi.org/10.1109/SP.2019.00062
https://doi.org/10.1016/j.jssas.2024.02.001

FBIM, (2025)

25.

26.

27.

28.

29.

30.

31.

32.

33.

12(9), 4369. https://doi.org/10.3390/app12094369
Samantapudi, R. K. R. (2025). Advantages and impact

of fine-tuning large language models for e-commerce
search. Journal of Information Systems Engineering
and Management, 10(45s), 600—622.
https://doi.org/10.52783/jisem.v10i455.8898

Koneru, N. M. K. (2021). Integrating security into CI/CD
pipelines: A DevSecOps approach with SAST, DAST,
and SCA tools. International Journal of Science and

Research Archive. Retrieved from
https://ijsra.net/content/role-notification-scheduling-

improving-patient

Del Savio, A. A., Vidal Quincot, J. F., Bazan Montalto, A.
D., Rischmoller Delgado, L. A., & Fischer, M. (2022).
Virtual Design and Construction (VDC) Framework: A

Current Review, Update and Discussion. Applied
sciences, 12(23), 12178.
https://doi.org/10.3390/app1223121781

Karwa, K. (2024). Navigating the job market: Tailored

career advice for design students. International
Journal of Emerging Business, 23(2).
https://www.ashwinanokha.com/ijeb-v23-2-2024.php
Chavan, A. (2024). Fault-tolerant event-driven

systems: Techniques and best practices. Journal of
Engineering and Applied Sciences Technology, 6, E167.
http://doi.org/10.47363/JEAST/2024(6)E167
Gannavarapu, P. (2025). Performance optimization of

hybrid Azure AD join across multi-forest deployments.
Journal of Information Systems Engineering and
Management, 10(45s), e575—e593.
https://doi.org/10.55278/jisem.2025.10.45s.575
Nyati, S. (2018). Revolutionizing LTL carrier operations:

A comprehensive analysis of an algorithm-driven
pickup and delivery dispatching solution. International
Journal of Science and Research (1JSR), 7(2), 1659-
1666. Retrieved from
https://www.ijsr.net/getabstract.php?paperid=SR2420

3183637

Chadha, K. S. (2025). Zero-trust data architecture for
multi-hospital research: HIPAA-compliant unification
of EHRs, wearable streams, and clinical trial analytics.
International Journal of Computational and
Experimental Science and Engineering, 11(3).
https://doi.org/10.22399/ijcesen.3477

Wang, Y., Mantyla, M. V., Liu, Z., & Markkula, J. (2022).
Test automation maturity improves product quality—

Quantitative study of open source projects using
continuous integration. Journal of Systems and

34.

35.

36.

37.

38.

39.

40.

41.

Software, 188, 111259.
https://doi.org/10.1016/].jss.2022.111259
Chandra, R. (2025). Reducing latency and enhancing

accuracy in LLM inference through firmware-level
optimization. International Journal of Signal
Processing, Embedded Systems and VLSI Design, 5(2),
26-36. https://doi.org/10.55640/ijvsli-05-02-02
Dakic, V., Chirammal, H. D., Mukhedkar, P., &
Vettathu, A. (2020). Mastering KVM virtualization:
design expert data center virtualization solutions
with the power of Linux KVM. Packt Publishing Ltd.
Kumar, A. (2019). The convergence of predictive

analytics in driving business intelligence and
enhancing DevOps efficiency. International Journal of
Computational Engineering and Management, 6(6),
118-142. Retrieved from https://ijcem.in/wp-
content/uploads/THE-CONVERGENCE-OF-
PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-
INTELLIGENCE-AND-ENHANCING-DEVOPS-
EFFICIENCY.pdf

Lulla, K. (2025). Python-based GPU testing pipelines:
Enabling zero-failure production lines. Journal of

Information Systems Engineering and Management,
10(47s), 978-994.
https://doi.org/10.55278/jisem.2025.10.475.978
Bennett, B. E. (2021, April). A practical method for
API testing in the context of continuous delivery and

behavior driven development. In 2021 IEEE
international conference on software testing,
verification and validation workshops (ICSTW) (pp.
44-47). |EEE.
https://doi.org/10.1109/ICSTW52544.2021.00020
Sayyed, Z. (2025). Development of a simulator to
mimic VMware vCloud Director (VCD) API calls for
cloud orchestration testing. International Journal of

Computational and Experimental Science and
Engineering, 11(3).
https://doi.org/10.22399/ijcesen.3480

Sardana, J. (2022). The role of notification scheduling

in improving patient outcomes. International Journal
of Science and Research Archive. Retrieved from
https://ijsra.net/content/role-notification-

scheduling-improving-patient

Prassanna Rao Rajgopal, Badal Bhushan, & Ashish
Bhatti. (2025). Vulnerability Management at Scale:
Automated Frameworks for 100K+ Asset
Environments. Utilitas Mathematica, 122(2), 897—-
925. Retrieved from

https://irjernet.com/index.php/fems

16

https://doi.org/10.3390/app12094369
https://doi.org/10.52783/jisem.v10i45s.8898
https://ijsra.net/content/role-notification-scheduling-improving-patient
https://ijsra.net/content/role-notification-scheduling-improving-patient
https://doi.org/10.3390/app1223121781
https://www.ashwinanokha.com/ijeb-v23-2-2024.php
http://doi.org/10.47363/JEAST/2024(6)E167
https://doi.org/10.55278/jisem.2025.10.45s.575
https://www.ijsr.net/getabstract.php?paperid=SR24203183637
https://www.ijsr.net/getabstract.php?paperid=SR24203183637
https://doi.org/10.22399/ijcesen.3477
https://doi.org/10.1016/j.jss.2022.111259
https://doi.org/10.55640/ijvsli-05-02-02
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://doi.org/10.55278/jisem.2025.10.47s.978
https://doi.org/10.1109/ICSTW52544.2021.00020
https://doi.org/10.22399/ijcesen.3480
https://ijsra.net/content/role-notification-scheduling-improving-patient
https://ijsra.net/content/role-notification-scheduling-improving-patient

FBIM, (2025)

42,

43.

44,

45,

https://utilitasmathematica.com/index.php/Index/arti
cle/view/2788

Bialek, J., Ciapessoni, E., Cirio, D., Cotilla-Sanchez, E.,
Dent, C., Dobson, I, ... & Wu, D. (2016). Benchmarking
and validation of cascading failure analysis tools. IEEE
Transactions on Power Systems, 31(6), 4887-4900.
https://doi.org/10.1109/TPWRS.2016.2518660
Koneru, N. M. K. (2025). Containerization best
practices: Using Docker and Kubernetes for enterprise

applications. Journal of Information Systems
Engineering and Management, 10(45s), 724-743.
https://doi.org/10.55278/jisem.2025.10.45s.724
Sayyed, Z. (2025). Application level scalable leader
selection algorithm for distributed systems.
International Journal of Computational and

Experimental Science and Engineering, 11(3).
https://doi.org/10.22399/ijcesen.3856
Karwa, K. (2024). Navigating the job market: Tailored

46.

47.

48.

career advice for design students. International
Journal of Emerging Business, 23(2).
https://www.ashwinanokha.com/ijeb-v23-2-
2024.php

Ehsan, A., Abuhaliga, M. A. M., Catal, C., & Mishra, D.
(2022). RESTful API testing methodologies: Rationale,
challenges, and solution directions. Applied Sciences,
12(9), 4369. https://doi.org/10.3390/app12094369
Reddy Gundla, S. (2025). PostgreSQL tuning for
cloud-native Java: Connection pooling vs. reactive

drivers. International Journal of Computational and
Experimental Science and Engineering, 11(3).
https://doi.org/10.22399/ijcesen.3479

Chavan, A. (2024). Fault-tolerant event-driven
systems: Techniques and best practices. Journal of

Engineering and Applied Sciences Technology, 6,
E167. http://doi.org/10.47363/JEAST/2024(6)E167

https://irjernet.com/index.php/fems

17

https://doi.org/10.1109/TPWRS.2016.2518660
https://doi.org/10.55278/jisem.2025.10.45s.724
https://doi.org/10.22399/ijcesen.3856
https://www.ashwinanokha.com/ijeb-v23-2-2024.php
https://www.ashwinanokha.com/ijeb-v23-2-2024.php
https://doi.org/10.3390/app12094369
https://doi.org/10.22399/ijcesen.3479
http://doi.org/10.47363/JEAST/2024(6)E167

