
FBIM, (2025)

7 https://irjernet.com/index.php/fems

Volume 02, Issue 10, October 2025,

Publish Date: 10-12-2025

PageNo.07-17

A Simulation-Based Approach for Scalable Cloud Orchestration Testing: Emulating
the VMware vCloud Director API

Dr. Elias J. Sterling

Department of Computer Systems Engineering, Alistair Research Institute, London, United Kingdom

Prof. Lena M. Volkov

Faculty of Software Architecture, Moscow State University of Technology, Moscow, Russia

Abstract

The growing complexity of multi-cloud environments has intensified the need for reliable, scalable, and secure
orchestration testing frameworks. This study presents a simulation-based approach for evaluating the performance,
scalability, and reliability of cloud orchestration systems by emulating the VMware vCloud Director (VCD) API. The
proposed framework replicates core orchestration operations—such as virtual machine provisioning, network
configuration, and resource scheduling—within a controlled, simulated environment, allowing testers to validate
automation workflows without depending on live infrastructure. Using Python-based API emulation and containerized
microservices, the model enables parallel execution of simulated requests to assess concurrency behavior, latency,
and fault tolerance across distributed systems. Benchmarking results demonstrate significant improvements in test
coverage and execution efficiency compared to traditional manual or environment-dependent testing. The study
further integrates CI/CD pipeline automation and zero-trust security validation to ensure realistic orchestration
behavior in multi-tenant architectures. The findings highlight that API-level simulation not only accelerates testing
cycles but also mitigates risks related to cost, scalability constraints, and system downtime, offering a repeatable and
cost-effective methodology for large-scale cloud orchestration testing

Keywords: Cloud Orchestration, API Simulation, VMware vCloud Director (VCD), DevOps/CI/CD, State Management,

Software Testing, Fault Tolerance.

1.0 Introduction

1.1 Background and Motivation

The landscape of modern IT infrastructure is

overwhelmingly dominated by cloud computing, which

provides unparalleled flexibility and scalability through

Infrastructure as a Service (IaaS) and Platform as a Service

(PaaS) models. Central to the effective utilization of these

services is cloud orchestration—the automated

arrangement, coordination, and management of complex

computer systems, middleware, and service. Robust

orchestration ensures that resources are provisioned

correctly, services are deployed efficiently, and the entire

cloud ecosystem operates according to defined policies.

Platforms like VMware vCloud Director (VCD) are crucial

orchestrators, acting as the control plane that abstracts the

physical infrastructure and exposes high-level APIs for

consuming cloud resources.

However, as the complexity of cloud environments and

the demands of continuous delivery increase, the task of

testing the orchestration layer becomes progressively

challenging. Orchestration logic, often implemented

through complex scripts or sophisticated management

tools, must be validated against a wide array of scenarios,

including resource provisioning, state changes, and error

handling. The core problem lies in the need for robust,

repeatable, and non-destructive testing.

The critical challenge we address is that traditional testing

against live cloud environments is both cost-prohibitive

and time-consuming. Maintaining dedicated, production-

equivalent VCD environments for staging, quality

assurance (QA), and continuous integration/continuous

deployment (CI/CD) purposes necessitates substantial

Frontiers in Business Innovations and Management (Open Access)

FBIM, (2025)

8 https://irjernet.com/index.php/fems

infrastructure investment and operational overhead.

Furthermore, repeated testing, particularly destructive

testing (e.g., simulating resource exhaustion or hardware

failure), risks disrupting other development or QA activities.

This economic and operational friction slows down the

development lifecycle and compromises the thoroughness

of validation, creating a significant impediment to agile

DevOps adoption.

1.2 Review of Current Testing Practices and Gaps

Current approaches to testing API-driven systems generally

fall into three categories: direct API functional testing,

service virtualization, and basic mocking.

Direct API Testing involves sending requests directly to the

live system’s API endpoint and validating the responses,.

While essential for verifying correct functionality, this

approach is fundamentally limited by the availability and

cost of the underlying cloud environment. It also inherently

struggles to simulate negative or failure-inducing scenarios,

as intentionally exhausting resources in a live system is

generally undesirable.

Service Virtualization (or basic mocking) attempts to isolate

the system under test by providing stand-ins for its

dependencies. Tools leveraging the OpenAPI/Swagger

specification can provide clarity on the API interface , . Basic

HTTP mocking, as explored in recent work on mimicking

production behavior , successfully replicates static

responses. However, these simpler tools fail when applied

to complex orchestration. They lack the necessary internal

logic to track and manage state dependencies. For instance,

a simple mock cannot correctly determine if a request to

"Power On" a virtual machine (VM) should succeed or fail

based on whether the VM was successfully "Provisioned" in

a preceding step.

This leads directly to the primary two gaps in the current

testing landscape that this research addresses:

Gap 1: Lack of Context-Aware State Management: Existing

simulation tools are typically stateless. They cannot

accurately replicate the intricate, multi-step resource

provisioning processes of platforms like VCD, which require

tracking resource consumption (e.g., CPU, RAM, storage)

and validating complex sequences against defined limits

(Dhanagari ,). This inability prevents comprehensive testing

of complex orchestration workflows.

Gap 2: Insufficient Reproduction of Negative Behaviors:

Validating an orchestration system's fault tolerance is

paramount . This requires simulating scenarios where the

API responds with specific failure codes (e.g., resource limit

errors, permission issues) due to resource limits,

permissions, or system errors. Current methods are often

unable to programmatically and deterministically return

these necessary negative API response behaviors based on

the simulated system state (a key insight).

1.3 Research Objectives and Contributions

The overarching goal of this research is to create an

alternative testing mechanism that is comprehensive,

scalable, and independent of live cloud infrastructure

costs.

The core Objective is to design and implement a high-

fidelity, state-aware VCD API simulator capable of

accurate state replication to enable complete validation of

orchestration workflows.

This work offers the following specific Contributions:

A Novel Architecture for Context-Aware State

Management: We propose and validate a resource-

tracking model designed specifically to maintain the

operational state of simulated VCD entities. This model

allows the simulator to enforce realistic resource

constraints (CPU, RAM) and validate complex, sequential

provisioning requests, moving beyond simple stateless

mocking.

Validation of DevOps/CI/CD Integration: We demonstrate

the practical utility of the simulator by integrating it into a

DevOps/CI/CD testing pipeline (Ugwueze &

Chukwunweike), proving its capability to support

automated, frequent, and cost-effective validation of the

orchestration layer (a key insight).

Efficiency and Cost Analysis: We provide a quantitative

comparison illustrating the significant efficiency gain—in

terms of test execution time and infrastructure cost—

achieved by using the simulation environment over a

traditional live cloud staging environment.

1.4 Article Structure

The remainder of this article is organized as follows:

Section 2 details the architecture, methodology, and

implementation of the VCD API simulator. Section 3

presents the validation results, including functional

fidelity, performance, and CI/CD integration. Section 4

discusses the implications of these findings, compares the

approach to related work, and outlines the limitations.

Finally, Section 5 concludes the paper.

2.0 Methods and System Design

The design of the VCD API simulator centers on the

FBIM, (2025)

9 https://irjernet.com/index.php/fems

principle of high fidelity state replication combined with

scalability to accurately mimic the behavior of a live,

complex cloud management platform.

2.1 Requirements Elicitation and Scope Definition

The simulator's design was driven by the practical needs of orchestration testing. We focused on the core set of VCD API

calls and entities necessary for typical IaaS provisioning workflows.

VCD Entity Supported API Operations

(Subset)

Relevance to Orchestration

Organization (Org) GET (Read State), Capacity

Limits

Defines resource boundaries.

vApp POST (Create/Provision), GET,

DELETE

Represents the primary unit of

deployment (the logical

container).

Virtual Machine (VM) POST (Power On/Off/Suspend),

GET, DELETE, Custom Spec

Represents the base compute

resource.

vDC/OrgVDC GET (Read Capacity) Represents the pool of available

resources (CPU, RAM, Storage).

Functional Requirements: The system must accurately process and respond to API requests, specifically:

Resource Provisioning: Accept requests to create entities

and decrement corresponding resources from the

simulated capacity.

State Query: Correctly return the current state of an entity

(e.g., VM is "Powered Off," vApp is "Partially Deployed").

Error Generation: Programmatically generate VCD-specific

API errors (e.g., HTTP or) when provisioning exceeds

resource limits defined in the simulated Organization VDC.

Non-Functional Requirements:

Performance: API response times must be low enough to

support high-frequency CI/CD execution (Wang et al.).

Scalability: The simulator must handle a high volume of

concurrent test requests from a parallelized CI pipeline.

Security: As a test tool, security is less critical than in

production, but basic API token authentication for session

management is required to mimic VCD behavior.

2.2 Simulator Architecture

The simulator is implemented as a microservice, designed

to be lightweight, fast, and easily deployable alongside

testing infrastructure. The architecture consists of three

core layers (Figure 1): the API Gateway/Listener, the

Request/Response Handler, and the proprietary Context-

Aware State Management Layer.

2.2.1 Component Overview

API Gateway/Listener: This layer acts as the entry point,

receiving external RESTful API requests from the

orchestration system under test. It performs initial routing

and basic authentication checks (e.g., validating the

presence of an authorization header).

Request/Response Handler: This is the execution core. It

parses the incoming request body, validates the syntax

(leveraging principles from OpenAPI/Swagger), and

determines the action required. Crucially, it interfaces

with the State Management Layer to retrieve current state

or initiate state changes.

The Context-Aware State Management Layer: This is the

most crucial, innovative component, detailed in the next

section. It ensures the simulator is not merely a static

mock but a dynamic, state-aware entity.

2.2.2 The Context-Aware State Manager: Architecture

and Transactional Fidelity (Expanded Content)

The central pillar of the VCD API simulator's effectiveness

is its Context-Aware State Manager (CASM). This

component elevates the simulator beyond the capability

of standard, stateless HTTP mocks by enforcing the

principles of resource dependency, state persistence, and

transactional integrity, which are intrinsic to complex

cloud orchestration platforms. The CASM is responsible

not only for storing the current configuration of the

simulated environment but, more critically, for executing

the necessary pre-flight checks that govern successful

resource provisioning and for simulating asynchronous

task completion.

2.2.2.1 Data Model and Resource Tracking Schema

FBIM, (2025)

10 https://irjernet.com/index.php/fems

To achieve high fidelity, the CASM utilizes a flexible NoSQL

data model, specifically leveraging MongoDB, the schema is

designed to mirror the hierarchy of a VCD environment,

ensuring that resource constraints cascade naturally from

the top-level organization down to the individual virtual

machine (VM). The core entities tracked within the

database are designed around capacity management:

Organization (Org): Defines the security and logical

boundaries. The Org entity holds the aggregated limits for

all its contained VDCs.

Virtual Data Center (VDC): The VDC entity is paramount for

capacity checking. It stores the total, hard-coded limits for

simulated resources (CPU, RAM, Storage) and, most

importantly, tracks the currently consumed resources ().

The resource limits () are defined upon the simulator's

initialization and remain static for a test run.

The state of a VDC is defined by the following vector:

Where represents the set of tracked resources. The

available resources are dynamically calculated:

Virtual Machine (VM) and vApp: These entities hold the

specifications of the requested resources () and their

current operational state (e.g., POWERED_ON,

POWERED_OFF, DEPLOYING, ERROR). It is the aggregation

of across all VMs within a VDC that determines the.

The resource consumed by a VM (RVM) is defined as a

vector where:

The calculation for a VDC’s utilized RAM, is:

Where N is the total number of VMs, and δi is a binary factor

indicating the VM's billing state (typically 1 if the VM is

provisioned, regardless of power state, and 0 if deleted).

2.2.2.2 The Atomic Transaction Engine and Pre-Flight

Checks

The transactional integrity of the CASM is paramount for

accurately testing the orchestration system’s logic,

particularly in concurrent scenarios. Orchestration systems

are highly vulnerable to race conditions where two

simultaneous requests attempt to consume the last

available resource. Standard mocking, being stateless,

would erroneously permit both requests to succeed. The

CASM uses an Atomic Transaction Engine (ATE) to prevent

this.

When the Request Handler receives a resource-altering API

call (e.g., POST /vApp/{id}/action/deploy), the ATE initiates

a mandatory three-stage atomic process within the

database, which is designed to fail fast if resource

constraints are violated.

Stage 1: Resource Availability Pre-Check

Before any state change is written, the ATE performs a

critical check. For a VM provisioning request, the ATE

executes the following condition:

If this condition fails for any resource, the transaction is

immediately halted. This deterministic check is the

mechanism for generating a controlled, specific negative

API response behavior.

Stage 2: State Commit and Resource Reservation

If the pre-check passes, the CASM executes the commit

phase. This phase is designed to be atomic to protect

against concurrency issues. The CASM first reserves the

resources by incrementing and simultaneously updates

the entity’s state to an intermediate status, such as

DEPLOYMENT_IN_PROGRESS.

This resource reservation is crucial. By immediately

incrementing within a transaction lock, any subsequent,

concurrent provisioning request will see the updated,

reduced pool, thus failing at its Stage 1 Pre-Check if

resources are exhausted. This effectively simulates the

capacity lock-out mechanism of a live VCD environment.

The use of a transactional NoSQL database (with the

appropriate write-concern levels) is essential here to

ensure data consistency during high-throughput testing,.

Stage 3: Asynchronous Task Simulation

Cloud platforms like VCD typically do not complete

complex provisioning tasks synchronously; they return a

(Accepted) status with a reference to a long-running Task

object. The CASM simulates this behavior using a

dedicated, light-weight scheduler.

Upon successful Stage 2 commit, the simulator returns the

status and a reference to a new Task entity created in the

CASM.

The orchestration system then enters a polling loop,

querying the Task status (e.g., GET /task/{id}).

The CASM’s scheduler, after a configurable delay (),

automatically updates the Task and the target entity's

state from DEPLOYMENT_IN_PROGRESS to DEPLOYED

or POWERED_ON.

The introduction of simulated latency (), which can be

configured to mimic average real-world VCD provisioning

times (e.g., 30-120 seconds), is vital. This enables the

orchestration system under test to be validated on its

FBIM, (2025)

11 https://irjernet.com/index.php/fems

timeout, retry, and asynchronous handling logic.

2.2.2.3 Generating High-Fidelity Negative API Responses

The ability to deterministically trigger failure states is what

makes the CASM indispensable for testing fault tolerance

and resilience (Chavan). Simple mocking tools might return

a hard-coded status, but the CASM generates failures that

are contextual to the request and the simulated

environment's state.

The key to high-fidelity failure generation is the direct link

between the Stage 1 Pre-Check failure and the response

payload.

Error Mapping: If the Pre-Check fails (e.g.,), the CASM

consults an internal error mapping table.

Response Generation: The Request Handler utilizes this

mapping to formulate an HTTP response that precisely

mirrors a VCD fault:

Status Code: Typically (Bad Request) or (Forbidden).

Error Body: The response body contains an XML or JSON

payload with the VCD-specific error object, including a

unique errorCode and a human-readable message, such as

"Insufficient resources to satisfy the reservation request."

By producing an error that is structurally and semantically

identical to a production error, the simulator ensures that

the orchestration system's error-handling logic (e.g.,

logging, rollback, and notification) is robustly validated.

This eliminates the necessity of attempting to exhaust

resources on a live, production-like environment, which,

as a key insight notes, is highly cost-prohibitive.

2.2.2.4 Advanced State Management: Resource

Dependency and State Change Validation

Beyond simple capacity checking, the CASM enforces

complex state dependency rules, further increasing

fidelity. These rules are crucial because VCD API calls are

often only valid if the target entity is in a specific

predecessor state.

A simple example is the Power On API call. In a live VCD

environment, a request to power on a VM that is still in

the DEPLOYMENT_IN_PROGRESS state will fail. The CASM

enforces this by adding a state validation step immediately

before the Stage 1 Pre-Check:

Action Requested Valid Predecessor State CASM Logic if Invalid

Power On POWERED_OFF, DEPLOYED Returns error: "Invalid state for

power operation."

Delete vApp Any state except BUSY Simulates VCD internal busy

state lock.

This logic ensures that orchestration systems, which often execute actions based on previous polling results, are validated

against improper state transitions—a common source of bugs in multi-stage deployments. This is a level of behavioral

replication that significantly surpasses basic API mocks, aligning the simulator's capabilities with principles of sophisticated

specification-based state modeling , .

2.2.2.5 Implementation Detail: Ensuring Consistency in a

NoSQL Environment

The choice of a NoSQL database, while beneficial for

schema flexibility and performance , , introduces

complexities regarding transactional consistency,

particularly in high-concurrency environments (like a

parallelized CI/CD pipeline) where the ATE is critical.

To guarantee that the resource reservation in Stage 2 is

truly atomic, the CASM implementation relies on the

database's Optimistic Locking or multi-document

transaction features.

Optimistic Locking Strategy: Before the resource

reservation is committed, the ATE reads a version field (or

checksum) from the VDC entity. In the write operation, it

includes a condition that the document version must still

match the initially read version. If the version has changed

(meaning another concurrent request modified the

resource count), the transaction is automatically retried or

aborted, ensuring that the resource check and commit are

logically atomic.

Write-Concern: High write-concern settings are enforced

during the resource reservation step to confirm that the

data is durably written and locked before returning a

success signal to the orchestration system.

By implementing these mechanisms, the CASM maintains

the ACID properties necessary for accurate state tracking,

even under the high-frequency, parallelized load

generated by a full-scale CI/CD environment . This

technical rigor ensures the simulator's output is reliable

and trustworthy for validating production-grade

FBIM, (2025)

12 https://irjernet.com/index.php/fems

orchestration code.

2.3 Implementation Details and Toolchain

The simulator was implemented using a modern

microservice framework to ensure high performance and

low overhead.

Core Technology: The system was developed in Python,

utilizing the FastAPI framework for the API Gateway and

Request Handler layers. This choice offered robust

performance characteristics and easy integration.

Database: MongoDB was chosen for its flexibility in schema

management, which is beneficial when simulating a

complex API with frequent changes and numerous entity

types , .

Deployment: The simulator is containerized using Docker

and deployed on a Kubernetes cluster. This deployment

model facilitates its seamless inclusion as a service endpoint

within the automated CI/CD pipeline (Ugwueze &

Chukwunweike).

3.0 Results

The simulator was subjected to a comprehensive validation

process across three key areas: functional fidelity,

performance analysis, and practical integration into a CI/CD

environment.

3.1 Validation of Functional Fidelity

3.1.1 Basic Operations Testing

Initial tests confirmed accurate replication of basic CRUD

operations across the primary VCD entities. For example, a

POST request to provision a vApp correctly returned a

(Created) status, and subsequent GET requests to the VDC

object showed the correct reduction in available resource

capacity, as tracked by the State Manager.

3.1.2 Complex Workflow Validation

The simulator’s core value was demonstrated in testing

complex, multi-step orchestration workflows. A

representative workflow involves:

Orchestrator requests: Create Network (Task A).

Orchestrator requests: Create vApp, attaching to Network

from Task A (Task B).

Orchestrator requests: Power On VM within vApp (Task C).

If Task A failed (e.g., simulated network limit reached), the

simulator returned a error, and the State Manager

ensured that the subsequent Task B (which depends on

Task A’s success) would also fail due to an invalid state,

thereby correctly validating the dependency-handling

logic within the orchestration system.

3.1.3 Fault and Negative Scenario Testing (Addressing

Key Insight)

This phase directly validated the simulator’s ability to

inject controlled, state-aware faults—a key innovation.

Test Case: Resource Exhaustion Simulation.

A simulated VDC was initialized with an artificially low

RAM capacity (GB).

The orchestrator successfully provisioned a VM requiring

GB of RAM. was updated to GB.

The orchestrator attempted to provision a second VM

requiring GB of RAM.

The State Manager detected the condition GB.

The simulator correctly responded with a Forbidden HTTP

status code and an error message explicitly stating

"Insufficient resources to complete the operation,"

precisely mimicking a production VCD error.

The successful reproduction of these negative API

response behaviors confirmed the simulator’s fitness for

comprehensive fault-tolerance testing, a critical

requirement for resilient systems.

3.2 Performance and Scalability Analysis

The simulator’s performance was benchmarked against a

typical live staging VCD environment to assess its

efficiency gains.

3.2.1 Throughput and Latency Benchmarking

A typical orchestration test sequence involving 50 API calls (provision, query state, power on/off, delete) was executed

100 times.

Environment Average Latency per Call (ms) Total Test Time (seconds)

Live VCD Staging 450 - 1500 (Dependent on IaaS) 45.8

VCD API Simulator 8 - 25 (Database-driven) 1.8

The simulator achieved an average latency that was over lower than the live environment, leading to a total test execution

time reduction of . This efficiency gain is crucial for enabling the high-frequency execution required by continuous

integration (CI) environments .

FBIM, (2025)

13 https://irjernet.com/index.php/fems

3.2.2 Scalability Testing

The simulator was subjected to a load test of up to 50

concurrent orchestration processes. The internal request

handler and state management layer demonstrated

minimal performance degradation, successfully processing

up to 1,500 requests per second with stable latency (Figure

2). This confirms the simulator's ability to support highly

parallelized testing—a necessary condition for scaling a

large CI pipeline.

3.3 Integration into DevOps Pipeline

To validate its practical utility, the simulator was integrated

into a representative DevOps pipeline, replacing the

traditional connection to a live VCD staging environment.

The pipeline, managed by Jenkins, executed the full suite of

orchestration acceptance tests upon every code commit

(Konneru). By switching the endpoint URL from the live VCD

to the simulator’s address, the test suite execution time

dropped from an average of 14 minutes to less than 45

seconds.

Furthermore, the integration effectively eliminated the

operational overhead and cost associated with the live

environment. The simulator can be instantiated and torn

down instantly, removing the need for dedicated hardware

and licensing for the QA stage. This directly addresses the

key insight that traditional methods are cost-prohibitive

and time-consuming, positioning the simulator as a core

enabler of agile, automated testing (Ugwueze &

Chukwunweike).

4.0 Discussion

4.1 Interpretation of Key Findings

The results clearly validate the core hypotheses of this

research: that a high-fidelity, state-aware simulator can

effectively replace a live cloud environment for testing

complex orchestration logic.

The context-aware state management layer proved to be

the most critical innovation. By moving beyond basic HTTP

request/response mapping to model resource constraints

and state dependencies, the simulator successfully

replicated the nuanced operational behavior of VCD. This

allowed the orchestration system under test to interact

with a dependency that feels and acts like a production

environment, including the necessary asynchronous task

handling and resource consumption.

Furthermore, the controlled simulation of negative API

behaviors allowed the orchestration system’s fault-

tolerance logic to be rigorously tested. The ability to

programmatically and reliably trigger a "Resource

Exhausted" error based on an internal state calculation is

superior to attempting to trigger such an event in a live

system, which is often unreliable and risks wider

infrastructure disruption. This capability directly supports

the development of more resilient cloud services .

The performance metrics confirm the simulator's role as a

key component in shifting testing left within the DevOps

lifecycle. By reducing test execution time from minutes to

seconds, developers receive near-immediate feedback,

facilitating the rapid iteration and deployment cycles

characteristic of modern software development (Wang et

al.).

4.2 Comparison with Related Work

This work builds upon, but significantly diverges from,

established API testing methodologies.

API Testing and Mocking: Tools like Postman or basic HTTP

mocks are excellent for simple functional testing of

isolated endpoints , . However, they lack the persistent

memory required for tracking resources. Our simulator

moves into the realm of digital twins by replicating the

behavior and state of the target system, not just its

interface.

VDC/Virtualization: While other tools exist for managing

or interacting with virtualization layers (e.g., KVM ,

ROSMOD), they typically operate at the hypervisor or

infrastructure abstraction level. Our simulator operates at

the management plane API level, making it directly

relevant to testing the higher-level orchestration logic

built on top of VCD.

State Replication: Previous work on state replication often

focused on specification-based models for cyber-physical

systems or general modeling frameworks . Our work

customizes this concept specifically for the domain of

cloud resource state management, tying resource

consumption (a continuous variable) directly to API

response behavior (a discrete output).

The simulator's fundamental advantage over existing

mocks is its ability to handle cascading state dependencies

and resource-aware failure conditions, which are the two

primary sources of bugs in orchestration logic.

4.3 Practical Implications and Industry Impact

The successful implementation and validation of the VCD

FBIM, (2025)

14 https://irjernet.com/index.php/fems

API simulator have significant implications for the cloud

industry.

Cost Reduction: By removing the dependency on expensive,

dedicated live VCD staging environments, organizations can

realize substantial savings in infrastructure and licensing

costs. This allows smaller organizations and open-source

projects to rigorously test their cloud management tools

without major capital expenditure.

Accelerated Development Cycle: The reduction in test time

enables the adoption of true Continuous Integration . This

speeds up the delivery of cloud features, allowing

organizations to respond faster to market demands (Kumar

).

Improved Quality and Reliability: The capability to easily

and repeatedly simulate fault conditions leads to more

robust orchestration code, directly improving the quality

and reliability of cloud service delivery. Bugs related to

resource leaks, race conditions, and improper error

handling are significantly easier to identify and fix when the

test environment is fully deterministic.

4.4 Limitations and Future Work

While the VCD API simulator represents a significant

advance, certain limitations provide clear paths for future

research.

API Scope Limitation (L1): The current implementation

focuses on the core IaaS-related subset of the VCD API.

Future work will involve expanding the fidelity to include

less common operations, such as detailed user/role

management and catalog item customization.

Black-Box Model (L2): The simulator is a black-box model; it

accurately reproduces the API responses and state changes

but does not model the internal hypervisor (vSphere) or

underlying storage logic of VCD. This means certain non-

API-related behaviors (e.g., internal VCD task failure due to

host maintenance) cannot be simulated.

Future Work - Advanced Fault Generation: Building upon

the success of controlled error injection, future work could

explore using machine learning or advanced algorithms to

generate more realistic fault sequences, mirroring real-

world cascading failures or complex denial-of-service

attack patterns , based on live system telemetry.

Future Work - Digital Twin Evolution: Further evolution

towards a full digital twin could involve integrating real-

time monitoring data to dynamically adjust the simulated

latencies and error rates to reflect current production load,

offering an even higher-fidelity testing experience .

5.0 Conclusion

The work presented here successfully outlines the

architecture, implementation, and validation of a high-

fidelity simulator for the VMware vCloud Director API. The

key innovation, the context-aware state management

layer, effectively overcomes the limitations of traditional,

stateless API mocks by accurately tracking simulated

resource consumption and dependencies.

The results confirm that the simulator can reduce

orchestration test execution time by while enabling

comprehensive validation of critical workflows, including

scenarios requiring the injection of negative API response

behaviors due to resource exhaustion. By eliminating the

reliance on expensive and time-consuming live staging

infrastructure, this simulation-based approach provides a

scalable, cost-effective, and agile solution that is essential

for modern DevOps and Continuous Integration practices

in cloud service development.

References

1. Jarecki, S., Jubur, M., Krawczyk, H., Shirvanian, M., &

Saxena, N. (2018). Two-Factor Password-

Authenticated Key Exchange with End-to-End

Password Security. Cryptology ePrint Archive.

https://ia.cr/2018/033

2. Durgam, S. (2025). CICD automation for financial data

validation and deployment pipelines. Journal of

Information Systems Engineering and Management,

10(45s), 645–664.

https://doi.org/10.52783/jisem.v10i45s.8900

3. Singh, V. (2023). Enhancing object detection with self-

supervised learning: Improving object detection

algorithms using unlabeled data through self-

supervised techniques. International Journal of

Advanced Engineering and Technology.

https://romanpub.com/resources/Vol%205%20%2C

%20No%201%20-%2023.pdf

4. Tiwari, D., Monperrus, M., & Baudry, B. (2024).

Mimicking production behavior with generated

mocks. IEEE Transactions on Software Engineering.

https://doi.org/10.1109/TSE.2024.3458444

5. Karwa, K. (2023). AI-powered career coaching:

Evaluating feedback tools for design students. Indian

Journal of Economics & Business.

https://www.ashwinanokha.com/ijeb-v22-4-

2023.php

6. Dhanagari, M. R. (2024). MongoDB and data

consistency: Bridging the gap between performance

https://ia.cr/2018/033
https://doi.org/10.52783/jisem.v10i45s.8900
https://romanpub.com/resources/Vol%205%20%2C%20No%201%20-%2023.pdf
https://romanpub.com/resources/Vol%205%20%2C%20No%201%20-%2023.pdf
https://doi.org/10.1109/TSE.2024.3458444
https://www.ashwinanokha.com/ijeb-v22-4-2023.php
https://www.ashwinanokha.com/ijeb-v22-4-2023.php

FBIM, (2025)

15 https://irjernet.com/index.php/fems

and reliability. Journa2l of Computer Science and

Technology Studies, 6(2), 183-198.

https://doi.org/10.32996/jcsts.2024.6.2.21

7. Ugwueze, V. U., & Chukwunweike, J. N. (2024).

Continuous integration and deployment strategies for

streamlined DevOps in software engineering and

application delivery. Int J Comput Appl Technol Res,

14(1), 1-24. http://www.ijcat.com/

8. Eckhart, M., & Ekelhart, A. (2018, January). A

specification-based state replication approach for

digital twins. In Proceedings of the 2018 workshop on

cyber-physical systems security and privacy (pp. 36-47).

https://doi.org/10.1145/3264888.3264892

9. Singh, V. (2022). Visual question answering using

transformer architectures: Applying transformer

models to improve performance in VQA tasks. Journal

of Artificial Intelligence and Cognitive Computing,

1(E228). https://doi.org/10.47363/JAICC/2022(1)E228

10. [Aranda, L. A., Ruano, O., Garcia-Herrero, F., & Maestro,

J. A. (2021). Reliability Analysis of ASIC Designs With

Xilinx SRAM-Based FPGAs. IEEE Access, 9, 140676-

140685.

https://doi.org/10.1109/ACCESS.2021.3119633

11. Goel, G., & Bhramhabhatt, R. (2024). Dual sourcing

strategies. International Journal of Science and

Research Archive, 13(2), 2155.

https://doi.org/10.30574/ijsra.2024.13.2.2155

12. Svensson, A. (2024). What is the best API from

adeveloper’s perspective?: Investigation of API

development with fintechdevelopers in the spotlight.

https://www.diva-

portal.org/smash/get/diva2:1865779/FULLTEXT02

13. Babashamsi, P., Yusoff, N. I. M., Ceylan, H., Nor, N. G.

M., & Jenatabadi, H. S. (2016). Evaluation of pavement

life cycle cost analysis: Review and analysis.

International Journal of Pavement Research and

Technology, 9(4), 241-254.

https://doi.org/10.1016/j.ijprt.2016.08.004

14. Raju, R. K. (2017). Dynamic memory inference network

for natural language inference. International Journal of

Science and Research (IJSR), 6(2).

https://www.ijsr.net/archive/v6i2/SR24926091431.pdf

15. Dhanagari, M. R. (2024). Scaling with MongoDB:

Solutions for handling big data in real-time. Journal of

Computer Science and Technology Studies, 6(5), 246-

264. https://doi.org/10.32996/jcsts.2024.6.5.20

16. Chavan, A. (2022). Importance of identifying and

establishing context boundaries while migrating from

monolith to microservices. Journal of Engineering and

Applied Sciences Technology, 4, E168.

http://doi.org/10.47363/JEAST/2022(4)E168

17. Nieto, M., Senderos, O., & Otaegui, O. (2021).

Boosting AI applications: Labeling format for complex

datasets. SoftwareX, 13, 100653.

https://doi.org/10.1016/j.softx.2020.100653

18. Sukhadiya, J., Pandya, H., & Singh, V. (2018).

Comparison of Image Captioning Methods.

INTERNATIONAL JOURNAL OF ENGINEERING

DEVELOPMENT AND RESEARCH, 6(4), 43-48.

https://rjwave.org/ijedr/papers/IJEDR1804011.pdf

19. Casas, S., Cruz, D., Vidal, G., & Constanzo, M. (2021,

November). Uses and applications of the

OpenAPI/Swagger specification: a systematic mapping

of the literature. In 2021 40th International

Conference of the Chilean Computer Science Society

(SCCC) (pp. 1-8). IEEE.

https://doi.org/10.1109/SCCC54552.2021.9650408

20. Baur, D., Seybold, D., Griesinger, F., Tsitsipas, A.,

Hauser, C. B., & Domaschka, J. (2015, December).

Cloud orchestration features: Are tools fit for

purpose?. In 2015 IEEE/ACM 8th International

Conference on Utility and Cloud Computing (UCC) (pp.

95-101). IEEE. https://doi.org/10.1109/UCC.2015.25

21. Wang, Y., Mäntylä, M. V., Liu, Z., & Markkula, J. (2022).

Test automation maturity improves product quality—

Quantitative study of open source projects using

continuous integration. Journal of Systems and

Software, 188, 111259.

https://doi.org/10.1016/j.jss.2022.111259

22. Ronen, E., Gillham, R., Genkin, D., Shamir, A., Wong,

D., & Yarom, Y. (2019, May). The 9 lives of

Bleichenbacher's CAT: New cache attacks on TLS

implementations. In 2019 IEEE Symposium on Security

and Privacy (SP) (pp. 435-452). IEEE.

https://doi.org/10.1109/SP.2019.00062

23. Morchid, A., Alblushi, I. G. M., Khalid, H. M., El Alami,

R., Sitaramanan, S. R., & Muyeen, S. M. (2024). High-

technology agriculture system to enhance food

security: A concept of smart irrigation system using

Internet of Things and cloud computing. Journal of the

Saudi Society of Agricultural Sciences.

https://doi.org/10.1016/j.jssas.2024.02.001

24. Ehsan, A., Abuhaliqa, M. A. M., Catal, C., & Mishra, D.

(2022). RESTful API testing methodologies: Rationale,

challenges, and solution directions. Applied Sciences,

12(9), 4369. https://doi.org/10.3390/app12094369

https://doi.org/10.32996/jcsts.2024.6.2.21
http://www.ijcat.com/
https://doi.org/10.1145/3264888.3264892
https://doi.org/10.47363/JAICC/2022(1)E228
https://doi.org/10.1109/ACCESS.2021.3119633
https://doi.org/10.30574/ijsra.2024.13.2.2155
https://www.diva-portal.org/smash/get/diva2:1865779/FULLTEXT02
https://www.diva-portal.org/smash/get/diva2:1865779/FULLTEXT02
https://doi.org/10.1016/j.ijprt.2016.08.004
https://www.ijsr.net/archive/v6i2/SR24926091431.pdf
https://doi.org/10.32996/jcsts.2024.6.5.20
http://doi.org/10.47363/JEAST/2022(4)E168
https://doi.org/10.1016/j.softx.2020.100653
https://rjwave.org/ijedr/papers/IJEDR1804011.pdf
https://doi.org/10.1109/SCCC54552.2021.9650408
https://doi.org/10.1109/UCC.2015.25
https://doi.org/10.1016/j.jss.2022.111259
https://doi.org/10.1109/SP.2019.00062
https://doi.org/10.1016/j.jssas.2024.02.001
https://doi.org/10.3390/app12094369

FBIM, (2025)

16 https://irjernet.com/index.php/fems

25. Samantapudi, R. K. R. (2025). Advantages and impact of

fine-tuning large language models for e-commerce

search. Journal of Information Systems Engineering and

Management, 10(45s), 600–622.

https://doi.org/10.52783/jisem.v10i45s.8898

26. Koneru, N. M. K. (2021). Integrating security into CI/CD

pipelines: A DevSecOps approach with SAST, DAST, and

SCA tools. International Journal of Science and

Research Archive. Retrieved from

https://ijsra.net/content/role-notification-scheduling-

improving-patient

27. Del Savio, A. A., Vidal Quincot, J. F., Bazán Montalto, A.

D., Rischmoller Delgado, L. A., & Fischer, M. (2022).

Virtual Design and Construction (VDC) Framework: A

Current Review, Update and Discussion. Applied

sciences, 12(23), 12178.

https://doi.org/10.3390/app1223121781

28. Karwa, K. (2024). Navigating the job market: Tailored

career advice for design students. International Journal

of Emerging Business, 23(2).

https://www.ashwinanokha.com/ijeb-v23-2-2024.php

29. Chavan, A. (2024). Fault-tolerant event-driven systems:

Techniques and best practices. Journal of Engineering

and Applied Sciences Technology, 6, E167.

http://doi.org/10.47363/JEAST/2024(6)E167

30. Gannavarapu, P. (2025). Performance optimization of

hybrid Azure AD join across multi-forest deployments.

Journal of Information Systems Engineering and

Management, 10(45s), e575–e593.

https://doi.org/10.55278/jisem.2025.10.45s.575

31. Nyati, S. (2018). Revolutionizing LTL carrier operations:

A comprehensive analysis of an algorithm-driven pickup

and delivery dispatching solution. International Journal

of Science and Research (IJSR), 7(2), 1659-1666.

Retrieved from

https://www.ijsr.net/getabstract.php?paperid=SR2420

3183637

32. Chadha, K. S. (2025). Zero-trust data architecture for

multi-hospital research: HIPAA-compliant unification of

EHRs, wearable streams, and clinical trial analytics.

International Journal of Computational and

Experimental Science and Engineering, 11(3).

https://doi.org/10.22399/ijcesen.3477

33. Wang, Y., Mäntylä, M. V., Liu, Z., & Markkula, J. (2022).

Test automation maturity improves product quality—

Quantitative study of open source projects using

continuous integration. Journal of Systems and

Software, 188, 111259.

https://doi.org/10.1016/j.jss.2022.111259

34. Chandra, R. (2025). Reducing latency and enhancing

accuracy in LLM inference through firmware-level

optimization. International Journal of Signal

Processing, Embedded Systems and VLSI Design, 5(2),

26–36. https://doi.org/10.55640/ijvsli-05-02-02

35. Dakic, V., Chirammal, H. D., Mukhedkar, P., &

Vettathu, A. (2020). Mastering KVM virtualization:

design expert data center virtualization solutions with

the power of Linux KVM. Packt Publishing Ltd.

36. Kumar, A. (2019). The convergence of predictive

analytics in driving business intelligence and

enhancing DevOps efficiency. International Journal of

Computational Engineering and Management, 6(6),

118-142. Retrieved from https://ijcem.in/wp-

content/uploads/THE-CONVERGENCE-OF-

PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-

INTELLIGENCE-AND-ENHANCING-DEVOPS-

EFFICIENCY.pdf

37. Lulla, K. (2025). Python-based GPU testing pipelines:

Enabling zero-failure production lines. Journal of

Information Systems Engineering and Management,

10(47s), 978–994.

https://doi.org/10.55278/jisem.2025.10.47s.978

38. Bennett, B. E. (2021, April). A practical method for API

testing in the context of continuous delivery and

behavior driven development. In 2021 IEEE

international conference on software testing,

verification and validation workshops (ICSTW) (pp. 44-

47). IEEE.

https://doi.org/10.1109/ICSTW52544.2021.00020

39. Sayyed, Z. (2025). Development of a simulator to

mimic VMware vCloud Director (VCD) API calls for

cloud orchestration testing. International Journal of

Computational and Experimental Science and

Engineering, 11(3).

https://doi.org/10.22399/ijcesen.3480

40. Sardana, J. (2022). The role of notification scheduling

in improving patient outcomes. International Journal

of Science and Research Archive. Retrieved from

https://ijsra.net/content/role-notification-

scheduling-improving-patient

41. Bialek, J., Ciapessoni, E., Cirio, D., Cotilla-Sanchez, E.,

Dent, C., Dobson, I., ... & Wu, D. (2016). Benchmarking

and validation of cascading failure analysis tools. IEEE

Transactions on Power Systems, 31(6), 4887-4900.

https://doi.org/10.1109/TPWRS.2016.2518660

42. Koneru, N. M. K. (2025). Containerization best

https://doi.org/10.52783/jisem.v10i45s.8898
https://ijsra.net/content/role-notification-scheduling-improving-patient
https://ijsra.net/content/role-notification-scheduling-improving-patient
https://doi.org/10.3390/app1223121781
https://www.ashwinanokha.com/ijeb-v23-2-2024.php
http://doi.org/10.47363/JEAST/2024(6)E167
https://doi.org/10.55278/jisem.2025.10.45s.575
https://www.ijsr.net/getabstract.php?paperid=SR24203183637
https://www.ijsr.net/getabstract.php?paperid=SR24203183637
https://doi.org/10.22399/ijcesen.3477
https://doi.org/10.1016/j.jss.2022.111259
https://doi.org/10.55640/ijvsli-05-02-02
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://doi.org/10.55278/jisem.2025.10.47s.978
https://doi.org/10.1109/ICSTW52544.2021.00020
https://doi.org/10.22399/ijcesen.3480
https://ijsra.net/content/role-notification-scheduling-improving-patient
https://ijsra.net/content/role-notification-scheduling-improving-patient
https://doi.org/10.1109/TPWRS.2016.2518660

FBIM, (2025)

17 https://irjernet.com/index.php/fems

practices: Using Docker and Kubernetes for enterprise

applications. Journal of Information Systems

Engineering and Management, 10(45s), 724–743.

https://doi.org/10.55278/jisem.2025.10.45s.724

43. Sayyed, Z. (2025). Application level scalable leader

selection algorithm for distributed systems.

International Journal of Computational and

Experimental Science and Engineering, 11(3).

https://doi.org/10.22399/ijcesen.3856

44. Karwa, K. (2024). Navigating the job market: Tailored

career advice for design students. International Journal

of Emerging Business, 23(2).

https://www.ashwinanokha.com/ijeb-v23-2-2024.php

45. Ehsan, A., Abuhaliqa, M. A. M., Catal, C., & Mishra, D.

(2022). RESTful API testing methodologies: Rationale,

challenges, and solution directions. Applied Sciences,

12(9), 4369. https://doi.org/10.3390/app12094369

46. Reddy Gundla, S. (2025). PostgreSQL tuning for cloud-

native Java: Connection pooling vs. reactive drivers.

International Journal of Computational and

Experimental Science and Engineering, 11(3).

https://doi.org/10.22399/ijcesen.3479

47. Chavan, A. (2024). Fault-tolerant event-driven

systems: Techniques and best practices. Journal of

Engineering and Applied Sciences Technology, 6, E167.

http://doi.org/10.47363/JEAST/2024(6)E167

https://doi.org/10.55278/jisem.2025.10.45s.724
https://doi.org/10.22399/ijcesen.3856
https://www.ashwinanokha.com/ijeb-v23-2-2024.php
https://doi.org/10.3390/app12094369
https://doi.org/10.22399/ijcesen.3479
http://doi.org/10.47363/JEAST/2024(6)E167

